47 resultados para Functional-structural Plant Modelling

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems have acquired effective adaptive strategies to cope with physiological challenges and to maximize biochemical processes under imposed constraints. Striated muscle tissue demonstrates a remarkable malleability and can adjust its metabolic and contractile makeup in response to alterations in functional demands. Activity-dependent muscle plasticity therefore represents a unique model to investigate the regulatory machinery underlying phenotypic adaptations in a fully differentiated tissue. Adjustments in form and function of mammalian muscle have so far been characterized at a descriptive level, and several major themes have evolved. These imply that mechanical, metabolic and neuronal perturbations in recruited muscle groups relay to the specific processes being activated by the complex physiological stimulus of exercise. The important relationship between the phenotypic stimuli and consequent muscular modifications is reflected by coordinated differences at the transcript level that match structural and functional adjustments in the new training steady state. Permanent alterations of gene expression thus represent a major strategy for the integration of phenotypic stimuli into remodeling of muscle makeup. A unifying theory on the molecular mechanism that connects the single exercise stimulus to the multi-faceted adjustments made after the repeated impact of the muscular stress remains elusive. Recently, master switches have been recognized that sense and transduce the individual physical and chemical perturbations induced by physiological challenges via signaling cascades to downstream gene expression events. Molecular observations on signaling systems also extend the long-known evidence for desensitization of the muscle response to endurance exercise after the repeated impact of the stimulus that occurs with training. Integrative approaches involving the manipulation of single factors and the systematic monitoring of downstream effects at multiple levels would appear to be the ultimate method for pinpointing the mechanism of muscle remodeling. The identification of the basic relationships underlying the malleability of muscle tissue is likely to be of relevance for our understanding of compensatory processes in other tissues, species and organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant-plant interactions are driven by environmental conditions, evolutionary relationships (ER) and the functional traits of the plants involved. However, studies addressing the relative importance of these drivers are rare, but crucial to improve our predictions of the effects of plant-plant interactions on plant communities and of how they respond to differing environmental conditions. To analyze the relative importance of - and interrelationships among - these factors as drivers of plant-plant interactions, we analyzed perennial plant co-occurrence at 106 dryland plant communities established across rainfall gradients in nine countries. We used structural equation modelling to disentangle the relationships between environmental conditions (aridity and soil fertility), functional traits extracted from the literature, and ER, and to assess their relative importance as drivers of the 929 pairwise plant-plant co-occurrence levels measured. Functional traits, specifically facilitated plants' height and nurse growth form, were of primary importance, and modulated the effect of the environment and ER on plant-plant interactions. Environmental conditions and ER were important mainly for those interactions involving woody and graminoid nurses, respectively. The relative importance of different plant-plant interaction drivers (ER, functional traits, and the environment) varied depending on the region considered, illustrating the difficulty of predicting the outcome of plant-plant interactions at broader spatial scales. In our global-scale study on drylands, plant-plant interactions were more strongly related to functional traits of the species involved than to the environmental variables considered. Thus, moving to a trait-based facilitation/competition approach help to predict that: (1) positive plant-plant interactions are more likely to occur for taller facilitated species in drylands, and (2) plant-plant interactions within woody-dominated ecosystems might be more sensitive to changing environmental conditions than those within grasslands. By providing insights on which species are likely to better perform beneath a given neighbour, our results will also help to succeed in restoration practices involving the use of nurse plants. (C) 2014 Geobotanisches Institut ETH, Stiftung Ruebel. Published by Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant species richness of permanent grasslands has often been found to be significantly associated with productivity. Concentrations of nutrients in biomass can give further insight into these productivity- plant species richness relationships, e.g. by reflecting land use or soil characteristics. However, the consistency of such relationships across different regions has rarely been taken into account, which might significantly compromise our potential for generalization. We recorded plant species richness and measured above-ground biomass and concentrations of nutrients in biomass in 295 grasslands in three regions in Germany that differ in soil and climatic conditions. Structural equation modelling revealed that nutrient concentrations were mostly indirectly associated with plant species richness via biomass production. However, negative associations between the concentrations of different nutrients and biomass and plant species richness differed considerably among regions. While in two regions, more than 40% of the variation in plant species richness could be attributed to variation in biomass, K, P, and to some degree also N concentrations, in the third region only 15% of the variation could be explained in this way. Generally, highest plant species richness was recorded in grasslands where N and P were co-limiting plant growth, in contrast to N or K (co-) limitation. But again, this pattern was not recorded in the third region. While for two regions land-use intensity and especially the application of fertilizers are suggested to be the main drivers causing the observed negative associations with productivity, in the third region the little variance accounted for, low species richness and weak relationships implied that former intensive grassland management, ongoing mineralization of peat and fluctuating water levels in fen grasslands have overruled effects of current land-use intensity and productivity. Finally, we conclude that regional replication is of major importance for studies seeking general insights into productivity-diversity relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most existing studies addressing the effects of invasive species on biodiversity focus on species richness ignoring better indicators of biodiversity and better predictors of ecosystem functioning such as the diversity of evolutionary histories (phylodiversity). Moreover, no previous study has separated the direct effect of alien plants on multiple ecosystem functions simultaneously (multifunctionality) from those indirect ones mediated by the decrease on biodiversity caused by alien plants. We aimed to analyze direct and indirect effects, mediated or not by its effect on biodiversity, of the invasive tree Ailanthus altissima on ecosystem multifunctionality of riparian habitats under Mediterranean climate. We measured vegetation attributes (species richness and phylodiversity) and several surrogates of ecosystem functioning (understory plant biomass, soil enzyme activities, available phosphorous and organic matter) in plots infested by A. altissima and in control (non-invaded) ones. We used structural equation modelling to tease apart the direct and indirect effects of A. altissima on ecosystem multifunctionality. Our results suggest that lower plant species richness, phylodiversity and multifunctionality were associated to the presence of A. altissima. When analyzing each function separately, we found that biodiversity has the opposite effect of the alien plant on all the different functions measured, therefore reducing the strength of the effect (either positive or negative) of A. altissima on them. This is one of the few existing studies addressing the effect of invasive species on phylodiversity and also studying the effect of invasive species on multiple ecosystem functions simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Prospective memory (PM), the ability to remember to perform intended activities in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to improve gradually over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in young school children in general, and even less is known about factors influencing its development. Currently, a number of studies suggest that executive functions (EF) are potentially influencing processes (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Additionally, metacognitive processes (MC: monitoring and control) are assumed to be involved while optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the relations between PM, EF and MC remain relatively unspecified. We intend to empirically examine the structural relations between these constructs. Method A cross-sectional study including 119 2nd graders (mage = 95.03, sdage = 4.82) will be presented. Participants (n = 68 girls) completed three EF tasks (stroop, updating, shifting), a computerised event-based PM task and a MC spelling task. The latent variables PM, EF and MC that were represented by manifest variables deriving from the conducted tasks, were interrelated by structural equation modelling. Results Analyses revealed clear associations between the three cognitive constructs PM, EF and MC (rpm-EF = .45, rpm-MC = .23, ref-MC = .20). A three factor model, as opposed to one or two factor models, appeared to fit excellently to the data (chi2(17, 119) = 18.86, p = .34, remsea = .030, cfi = .990, tli = .978). Discussion The results indicate that already in young elementary school children, PM, EF and MC are empirically well distinguishable, but nevertheless substantially interrelated. PM and EF seem to share a substantial amount of variance while for MC, more unique processes may be assumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive land use is a driving force for biodiversity decline in many ecosystems. In semi-natural grasslands, land-use activities such as mowing, grazing and fertilization affect the diversity of plants and arthropods, but the combined effects of different drivers and the chain of effects are largely unknown. In this study we used structural equation modelling to analyse how the arthropod communities in managed grasslands respond to land use and whether these responses are mediated through changes in resource diversity or resource quantity (biomass). Plants were considered resources for herbivores which themselves were considered resources for predators. Plant and arthropod (herbivores and predators) communities were sampled on 141 meadows, pastures and mown pastures within three regions in Germany in 2008 and 2009. Increasing land-use intensity generally increased plant biomass and decreased plant diversity, mainly through increasing fertilization. Herbivore diversity decreased together with plant diversity but showed no response to changes in plant biomass. Hence, land-use effects on herbivore diversity were mediated through resource diversity rather than quantity. Land-use effects on predator diversity were mediated by both herbivore diversity (resource diversity) and herbivore quantity (herbivore biomass), but indirect effects through resource quantity were stronger. Our findings highlight the importance of assessing both direct and indirect effects of land-use intensity and mode on different trophic levels. In addition to the overall effects, there were subtle differences between the different regions, pointing to the importance of regional land-use specificities. Our study underlines the commonly observed strong effect of grassland land use on biodiversity. It also highlights that mechanistic approaches help us to understand how different land-use modes affect biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cultivation of genetically modified (GM) plants has raised several environmental concerns. One of these concerns regards non-target soil fauna organisms, which play an important role in the decomposition of organic matter and hence are largely exposed to GM plant residues. Soil fauna may be directly affected by transgene products or indirectly by pleiotropic effects such as a modified plant metabolism. Thus, ecosystem services and functioning might be affected negatively. In a litterbag experiment in the field we analysed the decomposition process and the soil fauna community involved. Therefore, we used four experimental GM wheat varieties, two with a race-specific antifungal resistance against powdery mildew (Pm3b) and two with an unspecific antifungal resistance based on the expression of chitinase and glucanase. We compared them with two non-GM isolines and six conventional cereal varieties. To elucidate the mechanisms that cause differences in plant decomposition, structural plant components (i.e. C:N ratio, lignin, cellulose, hemicellulose) were examined and soil properties, temperature and precipitation were monitored. The most frequent taxa extracted from decaying plant material were mites (Cryptostigmata, Gamasina and Uropodina), springtails (Isotomidae), annelids (Enchytraeidae) and Diptera (Cecidomyiidae larvae). Despite a single significant transgenic/month interaction for Cecidomyiidae larvae, which is probably random, we detected no impact of the GM wheat on the soil fauna community. However, soil fauna differences among conventional cereal varieties were more pronounced than between GM and non-GM wheat. While leaf residue decomposition in GM and non-GM wheat was similar, differences among conventional cereals were evident. Furthermore, sampling date and location were found to greatly influence soil fauna community and decomposition processes. The results give no indication of ecologically relevant adverse effects of antifungal GM wheat on the composition and the activity of the soil fauna community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The purpose of the present study was to investigate predictors of perceived vulnerability for breast cancer in women with an average risk for breast cancer. On the basis of empirical findings that suggested which variables might be associated with perceived vulnerability for breast cancer, we investigated whether knowledge of breast cancer risk factors, cancer worry, intrusions about breast cancer, optimism about not getting cancer and perceived health status have a predictive value for perceived breast cancer vulnerability. DESIGN: In a 3-step approach, we recruited 292 women from the general public in Germany who had neither a family history of breast cancer nor breast cancer themselves. After receiving an initial informational letter about study objectives, the women were interviewed by telephone and then asked to fill in a self-administered questionnaire. METHODS: We used structural equation modelling and hypothesized that each of the included variables has a direct influence on perceived vulnerability for breast cancer. RESULTS: We found a valid model with acceptable fit indices. Optimism about not getting cancer, intrusions about breast cancer and women's perceived health status explained 32% of the variance of perceived vulnerability for breast cancer. Cancer worry and knowledge about breast cancer did not influence perceived vulnerability for breast cancer. CONCLUSION: Perceived vulnerability for breast cancer is associated with health-related variables more than with knowledge about breast cancer risk factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researchers largely agree that there is a positive relationship between achievement motivation and athletic performance, which is why the achievement motive is viewed as a potential criterion for talent. However, the underlying mechanism behind this relationship remains unclear. In talent and performance models, main effect, mediator and moderator models have been suggested. A longitudinal study was carried out among 140 13-year-old football talents, using structural equation modelling to determine which model best explains how hope for success (HS) and fear of failure (FF), which are the aspects of the achievement motive, motor skills and abilities that affect performance. Over a period of half a year, HS can to some extent explain athletic performance, but this relationship is not mediated by the volume of training, sport-specific skills or abilities, nor is the achievement motive a moderating variable. Contrary to expectations, FF does not explain any part of performance. Aside from HS, however, motor abilities and in particular skills also predict a significant part of performance. The study confirms the widespread assumption that the development of athletic performance in football depends on multiple factors, and in particular that HS is worth watching in the medium term as a predictor of talent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat fragmentation strongly affects species distribution and abundance. However, mechanisms underlying fragmentation effects often remain unresolved. Potential mechanisms are (1) reduced dispersal of a species or (2) altered species interactions in fragmented landscapes. We studied if abundance of the spider-hunting and cavity-nesting wasp Trypoxylon figulus Linnaeus (Hymenoptera: Crabronidae) is affected by fragmentation, and then tested for any effect of larval food (bottom up regulation) and parasitism (top down regulation). Trap nests of T. figulus were studied in 30 agricultural landscapes of the Swiss Plateau. The sites varied in the level of isolation from forest (adjacent, in the open landscape but connected, isolated) and in the amount of woody habitat (from 4 % to 74 %). We recorded wasp abundance (number of occupied reed tubes), determined parasitism of brood cells and analysed the diversity and abundance of spiders that were deposited as larval food. Abundances of T. figulus were negatively related to forest cover in the landscape. In addition, T. figulus abundances were highest at forest edges, reduced by 33.1% in connected sites and by 79.4% in isolated sites. The mean number of spiders per brood cell was lowest in isolated sites. Nevertheless, structural equation modelling revealed that this did not directly determine wasp abundance. Parasitism was neither related to the amount of woody habitat nor to isolation and did not change with host density. Therefore, our study showed that the abundance of T. figulus cannot be fully explained by the studied trophic interactions. Further factors, such as dispersal and habitat preference, seem to play a role in the population dynamics of this widespread secondary carnivore in agricultural landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: One important issue in sport and exercise psychology is to determine to what extent sports and exercise can help to increase self-esteem, and what the underlying mechanism might be. Based on the exercise and self-esteem model (EXSEM) and on findings from the sociometer theory, the mediating effect of physical self-concept and perceived social acceptance on the longitudinal relationship between motor ability and self-esteem was investigated. Design: Longitudinal study with three waves of data collection at intervals of ten weeks each. Method: 428 adolescents (46.3 % girls, mean age = 11.9, SD = .55) participated in the study, in which they performed three motor ability tests and completed paper-and-pencil questionnaires for physical self-concept and perceived social acceptance, as well as for self-esteem, at all three measuring points. Results: Using structural equation modelling procedures, the multiple mediation model revealed both physical self-concept and perceived social acceptance to be mediators between motor ability and self-esteem in the case of boys. In girls, on the other hand, the mediation between motor ability and self-esteem only takes place via physical self-concept. Conclusions: Gender differences in the relationship between motor ability and self-esteem suggest gender-specific interventions aimed at promoting self-concept.