14 resultados para Functional limitations
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A 21-year-old female with Fabry's disease (FD) presented acute psychotic symptoms such as delusions, auditory hallucinations and formal thought disorders. Since the age of 14, she had suffered from various psychiatric symptoms increasing in frequency and intensity. We considered the differential diagnoses of prodromal symptoms of schizophrenia and organic schizophrenia-like disorder. Routine examinations including cognitive testing, electroencephalography and structural magnetic resonance imaging revealed no pathological findings. Additional structural and functional imaging demonstrated a minor CNS involvement of FD, yet without functional limitations. In summary our examination results support the thesis that in the case of our patient a mere coincidence of FD and psychotic symptoms is more likely than a causal connection.
Resumo:
Cellular immune responses during acute Hepatitis C virus (HCV) and HIV infection are a known correlate of infection outcome. Viral adaptation to these responses via mutation(s) within CD8+ T-cell epitopes allows these viruses to subvert host immune control. This study examined HCV evolution in 21 HCV genotype 1-infected subjects to characterise the level of viral adaptation during acute and early HCV infection. Of the total mutations observed 25% were within described CD8+ T-cell epitopes or at viral adaptation sites. Most mutations were maintained into the chronic phase of HCV infection (75%). The lack of reversion of adaptations and high proportion of silent substitutions suggests that HCV has structural and functional limitations that constrain evolution. These results were compared to the pattern of viral evolution observed in 98 subjects during a similar phase in HIV infection from a previous study. In contrast to HCV, evolution during acute HIV infection is marked by high levels of amino acid change relative to silent substitutions, including a higher proportion of adaptations, likely reflecting strong and continued CD8+ T-cell pressure combined with greater plasticity of the virus. Understanding viral escape dynamics for these two viruses is important for effective T cell vaccine design.
Resumo:
Dental undertreatment is often seen in the older population. This is particularly true for the elderly living in nursing homes and geriatric hospitals. The progression of chronic diseases results in loss of their independence. They rely on daily support and care due to physical or mental impairment. The visit of a dentist in private praxis becomes difficult or impossible and is a logistic problem. These elderly patients are often not aware of oral and dental problems or these are not addressed. The geriatric hospital Bern, Ziegler, has integrated dental care in the concept of physical rehabilitation of geriatric patients. A total of 139 patients received dental treatment in the years 2005/2006. Their mean age was 83 years, but the segment with > 85 years of age amounted to 46%. The general health examinations reveald multiple and complex disorders. The ASA classification (American Society of Anesthesiologists, Physical Status Classification System) was applied and resulted in 15% = P2 (mild systemic disease, no functional limitation), 47% = P3 (severe systemic disease, definite functional limitations) and 38% = P4 (severe systemic disease, constant threat to life). Eighty-seven of the patients exhibited 3 or more chronic diseases with a prevalence of cardiovascular diseases, musculoskelettal disorders and dementia. Overall the differences between men and women were small, but broncho-pulmonary dieseases were significantly more frequent in women, while men were more often diagnosed with dementia and depression. Verbal communication was limited or not possible with 60% of the patients due to cognitive impairment or aphasia after a stroke. Although the objective treatment need is high, providing dentistry for frail and geriatric patients is characterized by risks due to poor general health conditions, difficulties in communication, limitations in feasibility and lack of adequate aftercare. In order to prevent the problem of undertreatment, elderly independently living people should undergo dental treatment regularly and in time. Training of nurses and doctors of geriatric hospitals in oral hygiene should improve the awareness. A multidisciplinary assessment of geriatric patients should include the oral and dental aspect if they enter the hospital.
Resumo:
BACKGROUND AND AIMS Inflammatory bowel disease (IBD) frequently manifests during childhood and adolescence. For providing and understanding a comprehensive picture of a patients' health status, health-related quality of life (HRQoL) instruments are an essential complement to clinical symptoms and functional limitations. Currently, the IMPACT-III questionnaire is one of the most frequently used disease-specific HRQoL instrument among patients with IBD. However, there is a lack of studies examining the validation and reliability of this instrument. METHODS 146 paediatric IBD patients from the multicenter Swiss IBD paediatric cohort study database were included in the study. Medical and laboratory data were extracted from the hospital records. HRQoL data were assessed by means of standardized questionnaires filled out by the patients in a face-to-face interview. RESULTS The original six IMPACT-III domain scales could not be replicated in the current sample. A principal component analysis with the extraction of four factor scores revealed the most robust solution. The four factors indicated good internal reliability (Cronbach's alpha=.64-.86), good concurrent validity measured by correlations with the generic KIDSCREEN-27 scales and excellent discriminant validity for the dimension of physical functioning measured by HRQoL differences for active and inactive severity groups (p<.001, d=1.04). CONCLUSIONS This study with Swiss children with IBD indicates good validity and reliability for the IMPACT-III questionnaire. However, our findings suggest a slightly different factor structure than originally proposed. The IMPACT-III questionnaire can be recommended for its use in clinical practice. The factor structure should be further examined in other samples.
Resumo:
BACKGROUND The severity of physical and mental impairments and oral problems, as well as socioeconomic factors, may have an impact on quality of life of children with cerebral palsy (CP). The aim of this research was to assess the impact of impairments and oral health conditions, adjusted by socioeconomic factors, on the Oral Health-Related Quality of Life (OHRQoL) of children with CP using their parents as proxies. METHODS Sixty children, between 6-14 years of age were selected. Their parents answered a children's OHRQoL instrument (5 domains) which combines the Parental-Caregivers Perception Questionnaire (P-CPQ) and Family Impact Scale (FIS). The severity of dental caries, type of CP, communication ability, gross motor function, seizures and socioeconomic conditions were assessed. RESULTS Considering the total score of the OHRQoL instrument, only the reduction of communication ability and dental caries severity had a negative impact on the OHRQoL (p < 0.05). Considering each domain of the instrument, the severity of the type of CP and its reduction of communication ability showed a negative impact on oral symptoms and functional limitations domains (p < 0.05). Seizures have a negative impact on oral symptoms domain (p = 0.006). The multivariate fitted model showed that the severity of dental caries, communication ability and low family income were negatively associated with the impact on OHRQoL (p = 0.001). CONCLUSIONS The severity of dental caries, communication ability, and family income are conditions strongly associated with a negative impact on OHRQoL of children with CP.
Resumo:
Background Existing lower-limb, region-specific, patient-reported outcome measures have clinimetric limitations, including limitations in psychometric characteristics (eg, lack of internal consistency, lack of responsiveness, measurement error) and the lack of reported practical and general characteristics. A new patient-reported outcome measure, the Lower Limb Functional Index (LLFI), was developed to address these limitations. Objective The purpose of this study was to overcome recognized deficiencies in existing lower-limb, region-specific, patient-reported outcome measures through: (1) development of a new lower-extremity outcome scale (ie, the LLFI) and (2) evaluation of the clinimetric properties of the LLFI using the Lower Extremity Functional Scale (LEFS) as a criterion measure. Design This was a prospective observational study. Methods The LLFI was developed in a 3-stage process of: (1) item generation, (2) item reduction with an expert panel, and (3) pilot field testing (n=18) for reliability, responsiveness, and sample size requirements for a larger study. The main study used a convenience sample (n=127) from 10 physical therapy clinics. Participants completed the LLFI and LEFS every 2 weeks for 6 weeks and then every 4 weeks until discharge. Data were used to assess the psychometric, practical, and general characteristics of the LLFI and the LEFS. The characteristics also were evaluated for overall performance using the Measurement of Outcome Measures and Bot clinimetric assessment scales. Results The LLFI and LEFS demonstrated a single-factor structure, comparable reliability (intraclass correlation coefficient [2,1]=.97), scale width, and high criterion validity (Pearson r=.88, with 95% confidence interval [CI]). Clinimetric performance was higher for the LLFI compared with the LEFS on the Measurement of Outcome Measures scale (96% and 95%, respectively) and the Bot scale (100% and 83%, respectively). The LLFI, compared with the LEFS, had improved responsiveness (standardized response mean=1.75 and 1.64, respectively), minimal detectable change with 90% CI (6.6% and 8.1%, respectively), and internal consistency (α=.91 and .95, respectively), as well as readability with reduced user error and completion and scoring times. Limitations Limitations of the study were that only participants recruited from outpatient physical therapy clinics were included and that no specific conditions or diagnostic subgroups were investigated. Conclusion The LLFI demonstrated sound clinimetric properties. There was lower response error, efficient completion and scoring, and improved responsiveness and overall performance compared with the LEFS. The LLFI is suitable for assessment of lower-limb function.
Resumo:
Balloon sinuplasty is a tool that is used to treat selected patients with paranasal sinus pathologies. No studies have investigated the aetiology of failed access to the frontal sinus. The aim of our study was to specify the intraoperative technical failure rate and to analyse the aetiology of the failed access to predict potential technical difficulties before surgery. We retrospectively analysed the charts of patients who underwent balloon sinuplasty from November 2007 to July 2010 at three different ENT-Centres. CT-analysis of the patients with failed access was performed. Of the 104 frontal sinuses, dilation of 12 (12%) sinuses failed. The anatomy of all failed cases revealed variations in the frontal recess (frontoethmoidal-cell, frontal-bulla-cell or agger-nasi-cell) or osteoneogenesis. In one patient, a lymphoma was overlooked during a balloon only procedure. The lymphoma was diagnosed 6 months later with a biopsy during functional endoscopic sinus surgery. In complex anatomical situations of the frontal recess, balloon sinuplasty may be challenging or impossible. In these situations, it is essential to have knowledge of classical functional endoscopic sinus surgery of the frontal recess area. The drawbacks of not including a histopathologic exam should be considered in balloon only procedures.
Resumo:
Diagnosis, staging, and treatment monitoring are still suboptimal for most genitourinary tumours. Diffusion-weighted magnetic resonance imaging (DW-MRI) has already shown promise as a noninvasive imaging modality in the early detection of microstructural and functional changes in several pathologies of various organs.
Resumo:
Triggered event-related functional magnetic resonance imaging requires sparse intervals of temporally resolved functional data acquisitions, whose initiation corresponds to the occurrence of an event, typically an epileptic spike in the electroencephalographic trace. However, conventional fMRI time series are greatly affected by non-steady-state magnetization effects, which obscure initial blood oxygen level-dependent (BOLD) signals. Here, conventional echo-planar imaging and a post-processing solution based on principal component analysis were employed to remove the dominant eigenimages of the time series, to filter out the global signal changes induced by magnetization decay and to recover BOLD signals starting with the first functional volume. This approach was compared with a physical solution using radiofrequency preparation, which nullifies magnetization effects. As an application of the method, the detectability of the initial transient BOLD response in the auditory cortex, which is elicited by the onset of acoustic scanner noise, was used to demonstrate that post-processing-based removal of magnetization effects allows to detect brain activity patterns identical with those obtained using the radiofrequency preparation. Using the auditory responses as an ideal experimental model of triggered brain activity, our results suggest that reducing the initial magnetization effects by removing a few principal components from fMRI data may be potentially useful in the analysis of triggered event-related echo-planar time series. The implications of this study are discussed with special caution to remaining technical limitations and the additional neurophysiological issues of the triggered acquisition.
Resumo:
Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.
Resumo:
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Resumo:
The scaphoid is the most frequently fractured carpal bone. When investigating fixation stability, which may influence healing, knowledge of forces and moments acting on the scaphoid is essential. The aim of this study was to evaluate cartilage contact forces acting on the intact scaphoid in various functional wrist positions using finite element modeling. A novel methodology was utilized as an attempt to overcome some limitations of earlier studies, namely, relatively coarse imaging resolution to assess geometry, assumption of idealized cartilage thicknesses and neglected cartilage pre-stresses in the unloaded joint. Carpal bone positions and articular cartilage geometry were obtained independently by means of high resolution CT imaging and incorporated into finite element (FE) models of the human wrist in eight functional positions. Displacement driven FE analyses were used to resolve inter-penetration of cartilage layers, and provided contact areas, forces and pressure distribution for the scaphoid bone. The results were in the range reported by previous studies. Novel findings of this study were: (i) cartilage thickness was found to be heterogeneous for each bone and vary considerably between carpal bones; (ii) this heterogeneity largely influenced the FE results and (iii) the forces acting on the scaphoid in the unloaded wrist were found to be significant. As major limitations, accuracy of the method was found to be relatively low, and the results could not be compared to independent experiments. The obtained results will be used in a following study to evaluate existing and recently developed screws used to fix scaphoid fractures.
Resumo:
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20–30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis. In this respect, the analysis of functional networks derived from intracranial electroencephalographic (iEEG) data has recently become a standard tool. Functional networks however are purely descriptive models and thus are conceptually unable to predict fundamental features of iEEG time-series, e.g., in the context of therapeutical brain stimulation. In this paper we present some first steps towards overcoming the limitations of functional network analysis, by showing that its results are implied by a simple predictive model of time-sliced iEEG time-series. More specifically, we learn distinct graphical models (so called Chow–Liu (CL) trees) as models for the spatial dependencies between iEEG signals. Bayesian inference is then applied to the CL trees, allowing for an analytic derivation/prediction of functional networks, based on thresholding of the absolute value Pearson correlation coefficient (CC) matrix. Using various measures, the thus obtained networks are then compared to those which were derived in the classical way from the empirical CC-matrix. In the high threshold limit we find (a) an excellent agreement between the two networks and (b) key features of periictal networks as they have previously been reported in the literature. Apart from functional networks, both matrices are also compared element-wise, showing that the CL approach leads to a sparse representation, by setting small correlations to values close to zero while preserving the larger ones. Overall, this paper shows the validity of CL-trees as simple, spatially predictive models for periictal iEEG data. Moreover, we suggest straightforward generalizations of the CL-approach for modeling also the temporal features of iEEG signals.
Resumo:
One novel treatment strategy for the diseased heart focuses on the use of pluripotent stem cell-derived cardiomyocytes (SC-CMs) to overcome the heart's innate deficiency for self-repair. However, targeted application of SC-CMs requires in-depth characterization of their true cardiogenic potential in terms of excitability and intercellular coupling at cellular level and in multicellular preparations. In this study, we elucidated the electrical characteristics of single SC-CMs and intercellular coupling quality of cell pairs, and concomitantly compared them with well-characterized murine native neonatal and immortalized HL-1 cardiomyocytes. Firstly, we investigated the electrical properties and Ca2+ signaling mechanisms specific to cardiac contraction in single SC-CMs. Despite heterogeneity of the new cardiac cell population, their electrophysiological activity and Ca2+ handling were similar to native cells. Secondly, we investigated the capability of paired SC-CMs to form an adequate subunit of a functional syncytium and analyzed gap junctions and signal transmission by dye transfer in cell pairs. We discovered significantly diminished coupling in SC-CMs compared with native cells, which could not be enhanced by a coculture approach combining SC-CMs and primary CMs. Moreover, quantitative and structural analysis of gap junctions presented significantly reduced connexin expression levels compared with native CMs. Strong dependence of intercellular coupling on gap junction density was further confirmed by computational simulations. These novel findings demonstrate that despite the cardiogenic electrophysiological profile, SC-CMs present significant limitations in intercellular communication. Inadequate coupling may severely impair functional integration and signal transmission, which needs to be carefully considered for the prospective use of SC-CMs in cardiac repair.