86 resultados para Functional imaging
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Rats affected by the MENX multitumor syndrome develop pheochromocytoma (100%). Pheochromocytomas are uncommon tumors and animal models are scarce, hence the interest in MENX rats to identify and preclinically evaluate novel targeted therapies. A prerequisite for such studies is a sensitive and noninvasive detection of MENXassociated pheochromocytoma. We performed positron emission tomography (PET) to determine whether rat pheochromocytomas are detected by tracers used in clinical practice, such as 68Ga-DOTATOC (somatostatin analogue) or (11)C-Hydroxyephedrine (HED), a norepinephrine analogue. We analyzed four affected and three unaffected rats. The PET scan findings were correlated to histopathology and immunophenotype of the tumors, their proliferative index, and the expression of genes coding for somatostatin receptors or the norepinephrine transporter. We observed that mean 68Ga-DOTATOC standard uptake value (SUV) in adrenals of affected animals was 23.3 ± 3.9, significantly higher than in control rats (15.4 ± 7.9; P = .03). The increase in mean tumor-to-liver ratio of (11)C-HED in the MENX-affected animals (1.6 ± 0.5) compared to controls (0.7 ± 0.1) was even more significant (P = .0016). In a unique animal model, functional imaging depicting two pathways important in pheochromocytoma biology discriminated affected animals from controls, thus providing the basis for future preclinical work with MENX rats.
Resumo:
Radiolabeled somatostatin analogs represent valuable tools for both in vivo diagnosis and therapy of neuroendocrine tumors (NETs) because of the frequent tumoral overexpression of somatostatin receptors (sst). The 2 compounds most often used in functional imaging with PET are (68)Ga-DOTATATE and (68)Ga-DOTATOC. Both ligands share a quite similar sst binding profile. However, the in vitro affinity of (68)Ga-DOTATATE in binding the sst subtype 2 (sst2) is approximately 10-fold higher than that of (68)Ga-DOTATOC. This difference may affect their efficiency in the detection of NET lesions because it is the sst2 that is predominantly overexpressed in NET. We thus compared the diagnostic value of PET/CT with both radiolabeled somatostatin analogs ((68)Ga-DOTATATE and (68)Ga-DOTATOC) in the same NET patients.
Resumo:
Alzheimer's disease (AD) is known to cause a variety of disturbances of higher visual functions that are closely related to the neuropathological changes. Visual association areas are more affected than primary visual cortex. Additionally, there is evidence from neuropsychological and imaging studies during rest or passive visual stimulation that the occipitotemporal pathway is less affected than the parietal pathway. Our goal was to investigate functional activation patterns during active visuospatial processing in AD patients and the impact of local cerebral atrophy on the strength of functional activation. Fourteen AD patients and fourteen age-matched controls were measured with functional magnetic resonance imaging (fMRI) while they performed an angle discrimination task. Both groups revealed overlapping networks engaged in angle discrimination including the superior parietal lobule (SPL), frontal and occipitotemporal (OTC) cortical regions, primary visual cortex, basal ganglia, and thalamus. The most pronounced differences between the two groups were found in the SPL (more activity in controls) and OTC (more activity in patients). The differences in functional activation between the AD patients and controls were partly explained by the differences in individual SPL atrophy. These results indicate that parietal dysfunction in mild to moderate AD is compensated by recruitment of the ventral visual pathway. We furthermore suggest that local cerebral atrophy should be considered as a covariate in functional imaging studies of neurodegenerative disorders.
Resumo:
PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.
Resumo:
Integrating evidence from different imaging modalities is important to overcome specific limitations of any given imaging method, such as insensitivity of the EEG to unsynchronized neural events, or the lack of fMRI sensitivity to events of low metabolic demand. Processes that are visible in one modality may be related in a nontrivial way to other processes visible in another modality and insight may only be obtained by integrating both methods through a common analysis. For example, brain activity at rest seems to be at least partly determined by an interaction of cortical rhythms (visible to EEG but not to fMRI) with sub-cortical activity (visible to fMRI, but usually not to EEG without averaging). A combination of EEG and fMRI data during rest may thus be more informative than the sum of two separate analyses in both modalities. Integration is also an important source of converging evidence about specific aspects and general principles of neural functions and their dysfunctions in certain pathologies. This is because not only electrical, but also energetic, biochemical, hemodynamic and metabolic processes characterize neural states and functions, and because brain structure provides crucial constraints upon neural functions. Focusing on multimodal integration of functional data should not distract from the privileged status of the electric field as the primary direct, noninvasive real-time measure of neural transmission. The preceding chapters illustrate how electrical neuroimaging has turned scalp EEG into an imaging modality which directly captures the full temporal dynamics of neural activity in the brain.
Resumo:
Functional imaging of brain electrical activity was performed in nine acute, neuroleptic-naive, first-episode, productive patients with schizophrenia and 36 control subjects. Low-resolution electromagnetic tomography (LORETA, three-dimensional images of cortical current density) was computed from 19-channel of electroencephalographic (EEG) activity obtained under resting conditions, separately for the different EEG frequencies. Three patterns of activity were evident in the patients: (1) an anterior, near-bilateral excess of delta frequency activity; (2) an anterior-inferior deficit of theta frequency activity coupled with an anterior-inferior left-sided deficit of alpha-1 and alpha-2 frequency activity; and (3) a posterior-superior right-sided excess of beta-1, beta-2 and beta-3 frequency activity. Patients showed deviations from normal brain activity as evidenced by LORETA along an anterior-left-to-posterior-right spatial axis. The high temporal resolution of EEG makes it possible to specify the deviations not only as excess or deficit, but also as inhibitory, normal and excitatory. The patients showed a dis-coordinated brain functional state consisting of inhibited prefrontal/frontal areas and simultaneously overexcited right parietal areas, while left anterior, left temporal and left central areas lacked normal routine activity. Since all information processing is brain-state dependent, this dis-coordinated state must result in inadequate treatment of (externally or internally generated) information.
Resumo:
The cyclic peptide Melanin Concentrating Hormone (MCH) is known to control a large number of brain functions in mammals such as food intake and metabolism, stress response, anxiety, sleep/wake cycle, memory, and reward. Based on neuro-anatomical and electrophysiological studies these functions were attributed to neuronal circuits expressing MCHR1, the single MCH receptor in rodents. In complement to our recently published work (1) we provided here new data regarding the action of MCH on ependymocytes in the mouse brain. First, we establish that MCHR1 mRNA is expressed in the ependymal cells of the third ventricle epithelium. Second, we demonstrated a tonic control of MCH-expressing neurons on ependymal cilia beat frequency using in vitro optogenics. Finally, we performed in vivo measurements of CSF flow using fluorescent micro-beads in wild-type and MCHR1-knockout mice. Collectively, our results demonstrated that MCH-expressing neurons modulate ciliary beating of ependymal cells at the third ventricle and could contribute to maintain cerebro-spinal fluid homeostasis.
Resumo:
OBJECTIVE The objective of the study is to investigate the electrocortical and the global cognitive effects of 3 months rivastigmine medication in a group of mild to moderate Alzheimer's disease patients. MATERIALS AND METHODS Multichannel EEG and cognitive performances measured with the Mini Mental State Examination in a group of 16 patients with mild to moderate Alzheimer's Disease were collected before and 3 months after the onset of rivastigmine medication. RESULTS Spectral analysis of the EEG data showed a significant power decrease in the delta and theta frequency bands during rivastigmine medication, i.e., a shift of the power spectrum towards 'normalization'. Three-dimensional low resolution electromagnetic tomography (LORETA) functional imaging localized rivastigmine effects in a network that includes left fronto-parietal regions, posterior cingulate cortex, bilateral parahippocampal regions, and the hippocampus. Moreover, a correlation analysis between differences in the cognitive performances during the two recordings and LORETA-computed intracortical activity showed, in the alpha1 frequency band, better cognitive performance with increased cortical activity in the left insula. CONCLUSION The results point to a 'normalization' of the EEG power spectrum due to medication, and the intracortical localization of these effects showed an increase of cortical activity in frontal, parietal, and temporal regions that are well-known to be affected in Alzheimer's disease. The topographic convergence of the present results with the memory network proposed by Vincent et al. (J. Neurophysiol. 96:3517-3531, 2006) leads to the speculation that in our group of patients, rivastigmine specifically activates brain regions that are involved in memory functions, notably a key symptom in this degenerative disease.
Resumo:
BACKGROUND The choice of imaging techniques in patients with suspected coronary artery disease (CAD) varies between countries, regions, and hospitals. This prospective, multicenter, comparative effectiveness study was designed to assess the relative accuracy of commonly used imaging techniques for identifying patients with significant CAD. METHODS AND RESULTS A total of 475 patients with stable chest pain and intermediate likelihood of CAD underwent coronary computed tomographic angiography and stress myocardial perfusion imaging by single photon emission computed tomography or positron emission tomography, and ventricular wall motion imaging by stress echocardiography or cardiac magnetic resonance. If ≥1 test was abnormal, patients underwent invasive coronary angiography. Significant CAD was defined by invasive coronary angiography as >50% stenosis of the left main stem, >70% stenosis in a major coronary vessel, or 30% to 70% stenosis with fractional flow reserve ≤0.8. Significant CAD was present in 29% of patients. In a patient-based analysis, coronary computed tomographic angiography had the highest diagnostic accuracy, the area under the receiver operating characteristics curve being 0.91 (95% confidence interval, 0.88-0.94), sensitivity being 91%, and specificity being 92%. Myocardial perfusion imaging had good diagnostic accuracy (area under the curve, 0.74; confidence interval, 0.69-0.78), sensitivity 74%, and specificity 73%. Wall motion imaging had similar accuracy (area under the curve, 0.70; confidence interval, 0.65-0.75) but lower sensitivity (49%, P<0.001) and higher specificity (92%, P<0.001). The diagnostic accuracy of myocardial perfusion imaging and wall motion imaging were lower than that of coronary computed tomographic angiography (P<0.001). CONCLUSIONS In a multicenter European population of patients with stable chest pain and low prevalence of CAD, coronary computed tomographic angiography is more accurate than noninvasive functional testing for detecting significant CAD defined invasively. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT00979199.
Resumo:
PURPOSE Little data is available on noninvasive MRI-based assessment of renal function during upper urinary tract (UUT) obstruction. In this study, we determined whether functional multiparametric kidney MRI is able to monitor treatment response in acute unilateral UUT obstruction. MATERIAL AND METHODS Between 01/2008 and 01/2010, 18 patients with acute unilateral UUT obstruction due to calculi were prospectively enrolled to undergo kidney MRI with conventional, blood oxygen level-dependent (BOLD) and diffusion-weighted (DW) sequences on emergency admission and after release of obstruction. Functional imaging parameters of the obstructed and contralateral unobstructed kidneys derived from BOLD (apparent spin relaxation rate [R2*]) and DW (total apparent diffusion coefficient [ADCT], pure diffusion coefficient [ADCD] and perfusion fraction [FP]) sequences were assessed during acute UUT obstruction and after its release. RESULTS During acute obstruction, R2* and FP values were lower in the cortex (p=0.020 and p=0.031, respectively) and medulla (p=0.012 and p=0.190, respectively) of the obstructed compared to the contralateral unobstructed kidneys. After release of obstruction, R2* and FP values increased both in the cortex (p=0.016 and p=0.004, respectively) and medulla (p=0.071 and p=0.044, respectively) of the formerly obstructed kidneys to values similar to those found in the contralateral kidneys. ADCT and ADCD values did not significantly differ between obstructed and contralateral unobstructed kidneys during or after obstruction. CONCLUSIONS In our patients with acute unilateral UUT obstruction due to calculi, functional kidney MRI using BOLD and DW sequences allowed for the monitoring of pathophysiologic changes of obstructed kidneys during obstruction and after its release.
Resumo:
OBJECTIVE To evaluate whether magnetic resonance imaging (MRI) is effective as computed tomography (CT) in determining morphologic and functional pulmonary changes in patients with cystic fibrosis (CF) in association with multiple clinical parameters. MATERIALS AND METHODS Institutional review board approval and patient written informed consent were obtained. In this prospective study, 30 patients with CF (17 men and 13 women; mean (SD) age, 30.2 (9.2) years; range, 19-52 years) were included. Chest CT was acquired by unenhanced low-dose technique for clinical purposes. Lung MRI (1.5 T) comprised T2- and T1-weighted sequences before and after the application of 0.1-mmol·kg gadobutrol, also considering lung perfusion imaging. All CT and MR images were visually evaluated by using 2 different scoring systems: the modified Helbich and the Eichinger scores. Signal intensity of the peribronchial walls and detected mucus on T2-weighted images as well as signal enhancement of the peribronchial walls on contrast-enhanced T1-weighted sequences were additionally assessed on MRI. For the clinical evaluation, the pulmonary exacerbation rate, laboratory, and pulmonary functional parameters were determined. RESULTS The overall modified Helbich CT score had a mean (SD) of 15.3 (4.8) (range, 3-21) and median of 16.0 (interquartile range [IQR], 6.3). The overall modified Helbich MR score showed slightly, not significantly, lower values (Wilcoxon rank sum test and Student t test; P > 0.05): mean (SD) of 14.3 (4.7) (range, 3-20) and median of 15.0 (IQR, 7.3). Without assessment of perfusion, the overall Eichinger score resulted in the following values for CT vs MR examinations: mean (SD), 20.3 (7.2) (range, 4-31); and median, 21.0 (IQR, 9.5) vs mean (SD), 19.5 (7.1) (range, 4-33); and median, 20.0 (IQR, 9.0). All differences between CT and MR examinations were not significant (Wilcoxon rank sum tests and Student t tests; P > 0.05). In general, the correlations of the CT scores (overall and different imaging parameters) to the clinical parameters were slightly higher compared to the MRI scores. However, if all additional MRI parameters were integrated into the scoring systems, the correlations reached the values of the CT scores. The overall image quality was significantly higher for the CT examinations compared to the MRI sequences. CONCLUSIONS One major diagnostic benefit of lung MRI in CF is the possible acquisition of several different morphologic and functional imaging features without the use of any radiation exposure. Lung MRI shows reliable associations with CT and clinical parameters, which suggests its implementation in CF for routine diagnosis, which would be particularly important in follow-up imaging over the long term.
Resumo:
Cluster headache (CH) is a rare headache disorder with severe unilateral headache bouts and autonomic symptoms. The pathophysiology of CH is not completely understood. Using a voxel-based morphometric paradigm or functional imaging, a key role of the hypothalamus and the pain matrix could be demonstrated during CH episodes. However, there are no diffusion tensor imaging (DTI) data investigating the white matter microstructure of the brain in patients with CH. Therefore, we used DTI to delineate microstructural changes in patients with CH in a headache-free state.
Resumo:
A 21-year-old female with Fabry's disease (FD) presented acute psychotic symptoms such as delusions, auditory hallucinations and formal thought disorders. Since the age of 14, she had suffered from various psychiatric symptoms increasing in frequency and intensity. We considered the differential diagnoses of prodromal symptoms of schizophrenia and organic schizophrenia-like disorder. Routine examinations including cognitive testing, electroencephalography and structural magnetic resonance imaging revealed no pathological findings. Additional structural and functional imaging demonstrated a minor CNS involvement of FD, yet without functional limitations. In summary our examination results support the thesis that in the case of our patient a mere coincidence of FD and psychotic symptoms is more likely than a causal connection.