27 resultados para Functional MRI
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The quick identification of potentially threatening events is a crucial cognitive capacity to survive in a changing environment. Previous functional MRI data revealed the right dorsolateral prefrontal cortex and the region of the left intraparietal sulcus (IPS) to be involved in the perception of emotionally negative stimuli. For assessing chronometric aspects of emotion processing, we applied transcranial magnetic stimulation above these areas at different times after negative and neutral picture presentation. An interference with emotion processing was found with transcranial magnetic stimulation above the dorsolateral prefrontal cortex 200-300 ms and above the left intraparietal sulcus 240/260 ms after negative stimuli. The data suggest a parallel and conjoint involvement of prefrontal and parietal areas for the identification of emotionally negative stimuli.
Resumo:
INTRODUCTION We report the first findings of functional magnetic resonance imaging of the auditory cortex in a young woman with a bilateral cochleovestibular deficit as first manifestation of Brown-Vialetto-Van Leare syndrome. The patient had no open speech discrimination, even with hearing aids, and is depending on lip reading for communication. METHODS To evaluate the possible efficiency of a cochlear implantation, we investigated hemodynamic responses within the central auditory pathways using an auditory functional magnetic resonance imaging paradigm. RESULTS Blood oxygen level-dependent correlates were detected bilaterally along the auditory pathways after exposure to intermittent clicking tone stimulation at 2 kHz. CONCLUSION These results suggest integrity of the central auditory pathways and represent a positive argument to propose a cochlear implantation with the aim to restore hearing.
Resumo:
PURPOSE To assess possible effects of working memory (WM) training on cognitive functionality, functional MRI and brain connectivity in patients with juvenile MS. METHODS Cognitive status, fMRI and inter-network connectivity were assessed in 5 cases with juvenile MS aged between 12 and 18 years. Afterwards they received a computerized WM training for four weeks. Primary cognitive outcome measures were WM (visual and verbal) and alertness. Activation patterns related to WM were assessed during fMRI using an N-Back task with increasing difficulty. Inter-network connectivity analyses were focused on fronto-parietal (left and right), default-mode (dorsal and ventral) and the anterior salience network. Cognitive functioning, fMRI and inter-network connectivity were reassessed directly after the training and again nine months following training. RESULTS Response to treatment was seen in two patients. These patients showed increased performance in WM and alertness after the training. These behavioural changes were accompanied by increased WM network activation and systematic changes in inter-network connectivity. The remaining participants were non-responders to treatment. Effects on cognitive performance were maintained up to nine months after training, whereas effects observed by fMRI disappeared. CONCLUSIONS Responders revealed training effects on all applied outcome measures. Disease activity and general intelligence may be factors associated with response to treatment.
Resumo:
Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias.
Resumo:
Deep brain stimulation (DBS) for Parkinson's disease often alleviates the motor symptoms, but causes cognitive and emotional side effects in a substantial number of cases. Identification of the motor part of the subthalamic nucleus (STN) as part of the presurgical workup could minimize these adverse effects. In this study, we assessed the STN's connectivity to motor, associative, and limbic brain areas, based on structural and functional connectivity analysis of volunteer data. For the structural connectivity, we used streamline counts derived from HARDI fiber tracking. The resulting tracks supported the existence of the so-called "hyperdirect" pathway in humans. Furthermore, we determined the connectivity of each STN voxel with the motor cortical areas. Functional connectivity was calculated based on functional MRI, as the correlation of the signal within a given brain voxel with the signal in the STN. Also, the signal per STN voxel was explained in terms of the correlation with motor or limbic brain seed ROI areas. Both right and left STN ROIs appeared to be structurally and functionally connected to brain areas that are part of the motor, associative, and limbic circuit. Furthermore, this study enabled us to assess the level of segregation of the STN motor part, which is relevant for the planning of STN DBS procedures.
Resumo:
Blood oxygenation level-dependent (BOLD) MRI was shown to allow non-invasive observation of renal oxygenation in humans. However, clinical applications of this type of functional MRI of the kidney are still limited, most likely because of difficulties in obtaining reproducible and reliable information. The aim of this study was to evaluate the reproducibility and robustness of a BOLD method applied to the kidneys and to identify systematic physiological changes potentially influencing the renal oxygenation of healthy volunteers. To measure the BOLD effect, a modified multi-echo data image combination (MEDIC) sequence was used to acquire 12 T2*-weighted images within a single breath-hold. Three identical measurements were performed on three axial and three coronal slices of right and left kidneys in 18 volunteers. The mean R2* (1/T2*) values determined in medulla and cortex showed no significant differences over three repetitions and low intra-subject coefficients of variation (CV) (3 and 4% in medulla and cortex, respectively). The average R2* values were higher in the medulla (16.15 +/- 0.11) than in the cortex (11.69 +/- 0.18) (P < 0.001). Only a minor influence of slice orientation was observed. Mean R2* values were slightly higher (3%) in the left than in the right kidney (P < 0.001). Differences between volunteers were identified (P < 0.001). Part of these differences was attributable to age-dependent R2* values, since these values increased with age when medulla (P < 0.001, r = 0.67) or cortex (P < 0.020, r = 0.42) were considered. Thus, BOLD measurements in the kidney are highly reproducible and robust. The results allow one to identify the known cortico-medullary gradient of oxygenation evidenced by the gradient of R2* values and suggest that medulla is more hypoxic in older than younger individuals. BOLD-MRI is therefore a useful tool to study sequentially and non-invasively regional oxygenation of human kidneys.
Resumo:
Autism has been associated with enhanced local processing on visual tasks. Originally, this was based on findings that individuals with autism exhibited peak performance on the block design test (BDT) from the Wechsler Intelligence Scales. In autism, the neurofunctional correlates of local bias on this test have not yet been established, although there is evidence of alterations in the early visual cortex. Functional MRI was used to analyze hemodynamic responses in the striate and extrastriate visual cortex during BDT performance and a color counting control task in subjects with autism compared to healthy controls. In autism, BDT processing was accompanied by low blood oxygenation level-dependent signal changes in the right ventral quadrant of V2. Findings indicate that, in autism, locally oriented processing of the BDT is associated with altered responses of angle and grating-selective neurons, that contribute to shape representation, figure-ground, and gestalt organization. The findings favor a low-level explanation of BDT performance in autism.
Resumo:
Background: Cerebral dysfunction occurring in mental disorders can show metabolic disturbances which are limited to circumscribed brain areas. Auditory hallucinations have been shown to be related to defined cortical areas linked to specific language functions. Here, we investigated if the study of metabolic changes in auditory hallucinations requires a functional rather than an anatomical definition of their location and size to allow a reliable investigation by magnetic resonance spectroscopy (MRS). Methods: Schizophrenia patients with (AH; n = 12) and without hallucinations (NH; n = 8) and healthy controls (HC; n = 11) underwent a verbal fluency task in functional MRI (fMRI) to functionally define Broca's and Wernicke's areas. Left and right Heschl's gyri were defined anatomically. Results: The mean distances in native space between the fMRI-defined regions and a corresponding anatomically defined area were 12.4 ± 6.1 mm (range: 2.7–36.1 mm) for Broca's area and 16.8 ± 6.2 mm (range: 4.5–26.4 mm) for Wernicke's area, respectively. Hence, the spatial variance was of similar extent as the size of the investigated regions. Splitting the investigations into a single voxel examination in the frontal brain and a spectroscopic imaging part for the more homogeneous field areas led to good spectral quality for almost all spectra. In Broca's area, there was a significant group effect (p = 0.03) with lower levels of N-acetyl-aspartate (NAA) in NH compared to HC (p = 0.02). There were positive associations of NAA levels in the left Heschl's gyrus with total (p = 0.03) and negative (p = 0.006) PANSS scores. In Broca's area, there was a negative association of myo-inositol levels with total PANSS scores (p = 0.008). Conclusion: This study supports the neurodegenerative hypothesis of schizophrenia only in a frontal region whereas the results obtained from temporal regions are in contrast to the majority of previous studies. Future research should test the hypothesis raised by this study that a functional definition of language regions is needed if neurochemical imbalances are expected to be restricted to functional foci.
Resumo:
BACKGROUND: Reduced sensitivity to positive feedback is common in patients with major depressive disorder (MDD). However, findings regarding negative feedback are ambiguous, with both exaggerated and blunted responses being reported. The ventral striatum (VS) plays a major role in processing valenced feedback, and previous imaging studies have shown that the locus of controls (self agency v. external agency) over the outcome influences VS response to feedback. We investigated whether attributing the outcome to one's own action or to an external agent influences feedback processing in patients with MDD. We hypothesized that depressed participants would be less sensitive to the feedback attribution reflected by an altered VS response to self-attributed gains and losses. METHODS: Using functional MRI and a motion prediction task, we investigated the neural responses to self-attributed (SA) and externally attributed (EA) monetary gains and losses in unmedicated patients with MDD and healthy controls. RESULTS: We included 21 patients and 25 controls in our study. Consistent with our prediction, healthy controls showed a VS response influenced by feedback valence and attribution, whereas in depressed patients striatal activity was modulated by valence but was insensitive to attribution. This attribution insensitivity led to an altered ventral putamen response for SA - EA losses in patients with MDD compared with healthy controls. LIMITATIONS: Depressed patients with comorbid anxiety disorder were included. CONCLUSION: These results suggest an altered assignment of motivational salience to SA losses in patients with MDD. Altered striatal response to SA negative events may reinforce the belief of not being in control of negative outcomes contributing to a cycle of learned helplessness.
Resumo:
PURPOSE: To identify MRI characteristics that may predict the functional effect of selective dorsal rhizotomy (SDR) in children with bilateral spastic paresis. METHODS: We performed SDR in a group of 36 patients. The gross motor functioning measure-66 (GMFM-66) was applied before and after SDR. Available cerebral MRIs were retrospectively classified into three diagnostic groups: periventricular leucomalacia (PVL; n = 10), hydrocephalus (n = 2), and normal (n = 6). In patients with PVL, we scored the severity of the MR abnormalities. We compared the changes in the GMFM-66 after SDR in the diagnostic groups. In patients with PVL, we correlated the severity of the MR abnormalities with the changes in the GMFM-66. RESULTS: The mean follow-up period was 5 years and 4 months (range, 1 year and 1 month to 9 years). The best improvement in gross motor function was observed in patients with normal MRI, and the slightest improvement was observed in patients with hydrocephalus. The severity of the PVL did correlate with the GMFM-66 score before SDR but not with the functional effect of SDR. CONCLUSION: We conclude that with respect to gross motor skills, the improvements after SDR are good in patients with no MRI abnormalities. In the patients with hydrocephalus, the improvements after SDR were insignificant. In patients with PVL, the improvements were intermediate and did not correlate with the degree of PVL.
Resumo:
PURPOSE: To evaluate the function of the parotid glands before and during gustatory stimulation, using an intrinsic susceptibility-weighted MRI method (blood oxygenation level dependent, BOLD-MRI) at 1.5T and 3T. MATERIALS AND METHODS: A total of 10 and 13 volunteers were investigated at 1.5T and 3T, respectively. Measurements were performed before and during gustatory stimulation using ascorbate. Circular regions of interest (ROIs) were delineated in the left and right parotid glands, and in the masseter muscle for comparison. The effects of stimulation were evaluated by calculating the difference between the relaxation rates, DeltaR(2)*. Baseline and stimulation were statistically compared (Student's t-tests), merging both parotid glands. RESULTS: The averaged DeltaR(2)* values prestimulation obtained in all parotid glands were stable (-0.61 to 0.38 x 10(-3) seconds(-1)). At 3T, these values were characterized by an initial drop (to -2.7 x 10(-3) seconds(-1)) followed by a progressive increase toward the baseline. No significant difference was observed between baseline and parotid gland stimulation at 1.5T, neither for the masseter muscle at both field strengths. A considerable interindividual variability (over 76%) was noticed at both magnetic fields. CONCLUSION: BOLD-MRI at 3T was able to detect DeltaR(2)* changes in the parotid glands during gustatory stimulation, consistent with an increase in oxygen consumption during saliva production.