27 resultados para Frozen-thawed semen
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility.
Resumo:
To increase the efficiency of equine semen, it could be useful to split the artificial insemination dose and refreeze the redundant spermatozoa. In experiment I, semen of 10 sires of the Hanoverian breed, with poor and good semen freezability, was collected by artificial vagina, centrifuged, extended in INRA82 at 400 × 106 sperm/mL, and automatically frozen. After this first routinely applied freezing program, semen from each stallion was thawed, resuspended in INRA82 at 40 × 106 sperm/mL, filled in 0.5-mL straws, and refrozen. These steps were repeated, and sperm concentration was adjusted to 20 × 106 sperm/mL after a third freezing cycle. Regardless of stallion freezability group, sperm motility and sperm membrane integrity (FITC/PNA-Syto-PI-stain) decreased stepwise after first, second, and third freezing (62.3% ± 9.35, 24.0% ± 15.4, 3.3% ± 4.34, P ≤ .05; 29.6% ± 8.64, 14.9% ± 6.38, 8.3% ± 3.24, P ≤ .05), whereas the percentage of acrosome-reacted cells increased (19.5% ± 7.59, 23.9% ± 8.51, 29.2% ± 6.58, P ≤ .05). Sperm chromatin integrity was unaffected after multiple freeze/thaw cycles (DFI value: 18.6% ± 6.6, 17.2% ± 6.84, 17.1% ± 7.21, P > .05). In experiment II estrous, Hanoverian warmblood mares were inseminated with a total of 200 × 106 spermatozoa of two stallions with either good or poor semen freezability originating from the first, second, and third freeze/thaw cycle. First-cycle pregnancy rates were 4/10, 40%; 1/10, 10%; and 0/10, 0%. In conclusion, as expected, sperm viability of stallion spermatozoa significantly decreases as a consequence of multiple freezing. However, sperm chromatin integrity was not affected. Pregnancy rates after insemination of mares with refrozen semen are reduced.
Resumo:
Taking intraoperative frozen sections (FS) is a widely used procedure in oncologic surgery. However so far no evidence of an association of FS analysis and premalignant changes in the surgical margin exists. Therefore, the aim of this study was to evaluate the impact of FS on different categories of the final margins of squamous cell carcinoma (SCC) of the oral cavity and lips.
Resumo:
Vital tissue provided by fresh frozen tissue banking is often required for genetic tumor profiling and tailored therapies. However, the potential patient benefits of fresh frozen tissue banking are currently limited to university hospitals. The objective of the present pilot study--the first one in the literature--was to evaluate whether fresh frozen tissue banking is feasible in a regional hospital without an integrated institute of pathology.
Resumo:
PURPOSE: We evaluated the incidence of pathological findings of the ureter at cystectomy for transitional cell carcinoma of the bladder and assessed the usefulness of intraoperative frozen section examination of the ureter. MATERIALS AND METHODS: Histopathological findings of ureteral frozen section examination were compared to the corresponding permanent sections and the diagnostic accuracy of frozen section examination was evaluated. These segments were then compared to the more proximal ureteral segments resected at the level where they cross over the common iliac arteries. The histopathological findings of the ureteral segments were then correlated for upper urinary tract recurrence and overall survival. RESULTS: Transitional cell carcinoma or carcinoma in situ was found on frozen section examination of the distal ureter in 39 of 805 patients (4.8%) and on permanent sections in 29 (3.6%). In 755 patients the false-negative rate of frozen section examination of the ureters was 0.8%. Of the patients with carcinoma in situ diagnosed on the first frozen section examination 80% also had carcinoma in situ in the bladder. Transitional cell carcinoma or carcinoma in situ in the most proximally resected ureteral segments was found in 1.2% of patients. After radical cystectomy there was tumor recurrence in the upper urinary tract in 3% of patients with negative ureteral frozen section examination and in 17% with carcinoma in situ on frozen section examination. CONCLUSIONS: Routine frozen section examination of the ureters at radical cystectomy is only recommended for patients with carcinoma in situ of the bladder, provided the ureters are resected where they cross the common iliac arteries.
Resumo:
Neospora caninum represents one of the most frequent abortifaciant organisms worldwide. The parasite is diaplacentally transmitted from the pregnant cow to the fetus, where it normally leads to the delivery of a healthy, however persistently infected calf. Abortion thus is a relative rare event. The transmission of bovine neosporosis occurs in more than 90% of the cases vertically due to the endogenous reactivation of a persistently infected mother. Exogenous infections are therefore responsible for less than 10% of the cases.The question arises about which infection sources may be relevant in this context. In Switzerland, the role of dogs as definitive hosts has been shown to be of low significance in that respect. Recently, discussion focused on the potential of infectious bull semen following natural or artificial insemination. Thus, a few years ago a report documented the detectability of N. caninum-DNA in the semen of naturally infected bulls by nested-PCR. As a consequence, we decided to gain own experience by investigating 5 separate semen specimens per animal, originating from 20 N. caninum-seropositive bulls used for artificial insemination in Switzerland. All probes turned out to be negative by nested PCR. Based upon our laboratory experiences, the potential bull semen-associated Neospora-problem seems not to affect the Swiss bull population, thus there is no evidence to include further respective means of control.
Resumo:
We describe the measurement, at 100 K, of the SIMS relative sensitivity factors (RSFs) of the main physiological cations Na+, K+, Mg2+, and Ca2+ in frozen-hydrated (F-H) ionic solutions. Freezing was performed by either plunge freezing or high-pressure freezing. We also report the measurement of the RSFs in flax fibers, which are a model for ions in the plant cell wall, and in F-H ionic samples, which are a model for ions in the vacuole. RSFs were determined under bombardment with neutral oxygen (FAB) for both the fibers and the F-H samples. We show that referencing to ice-characteristic secondary ions is of little value in determining RSFs and that referencing to K is preferable. The RSFs of Na relative to K and of Ca relative to Mg in F-H samples are similar to their respective values in fiber samples, whereas the RSFs of both Ca and Mg relative to K are lower in fibers than in F-H samples. Our data show that the physical factors important for the determination of the RSFs are not the same in F-H samples and in homogeneous matrixes. Our data show that it is possible to perform a SIMS relative quantification of the cations in frozen-hydrated samples with an accuracy on the order of 15%. Referencing to K permits the quantification of the ionic ratios, even when the absolute concentration of the referencing ion is unknown. This is essential for physiological studies of F-H biological samples.
Resumo:
The treatment of complex aortic pathologies involving the ascending aorta, the aortic arch, and the descending aorta remains a challenging issue in aortic surgery. The frozen elephant trunk procedure effectively combines surgical and interventional technologies in the treatment of extensive aortic aneurysms and dissections. We present two patients with complex aortic lesions involving all three segments of the thoracic aorta. The device used in our series is the new E-vita open hybrid prosthesis consisting of a proximal woven polyester tube and a distal self-expandable nitinol stent graft, which can be delivered antegrade into the descending aorta.
Resumo:
OBJECTIVE: The purpose of this study was to analyze and compare the value of fine-needle aspiration cytology (FNAC) and frozen section (FS) analysis in the assessment of parotid gland tumors. STUDY DESIGN: Chart review and cross-sectional analysis. SUBJECTS AND METHODS: FNAC and FS analysis of 110 parotid tumors, 68 malignancies and 42 benign tumors, were analyzed and compared with the final histopathologic diagnosis. RESULTS: The accuracy, sensitivity, and specificity of FNAC in detecting malignant tumors were 79 percent, 74 percent, and 88 percent, respectively. On FS analysis, the accuracy, sensitivity, and specificity in detecting malignant tumors were 94 percent, 93 percent, and 95 percent, respectively. The histologic tumor type was correctly diagnosed by FNAC and FS in 27 of 42 (64%) and 39 of 42 (93%) benign tumors, respectively, and in 24 of 68 (35%) and 49 of 68 (72%) malignant neoplasms, respectively. CONCLUSION: The current analysis showed a superiority of FS compared with FNAC regarding the diagnosis of malignancy and tumor typing. FNAC alone is not prone to determine the surgical management of parotid malignancies.
Resumo:
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.