90 resultados para Frontal Cortex
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The traditional view of a predominant inferior parietal representation of gestures has been recently challenged by neuroimaging studies demonstrating that gesture production and discrimination may critically depend on inferior frontal lobe function. The aim of the present work was therefore to investigate the effect of transient disruption of these brain sites by continuous theta burst stimulation (cTBS) on gesture production and recognition.
Resumo:
This study investigated the roles of the right and left dorsolateral prefrontal (rDLPFC, lDLPFC) and the medial frontal cortex (MFC) in executive functioning using a theta burst transcranial magnetic stimulation (TMS) approach. Healthy subjects solved two visual search tasks: a number search task with low cognitive demands, and a number and letter search task with high cognitive demands. To observe how subjects solved the tasks, we assessed their behavior with and without TMS using eye movements when subjects were confronted with specific executive demands. To observe executive functions, we were particularly interested in TMS-induced changes in visual exploration strategies found to be associated with good or bad performance in a control condition without TMS stimulation. TMS left processing time unchanged in both tasks. Inhibition of the rDLPFC resulted in a decrease in anticipatory fixations in the number search task, i.e., a decrease in a good strategy in this low demand task. This was paired with a decrease in stimulus fixations. Together, these results point to a role of the rDLPFC in planning and response selection. Inhibition of the lDLPFC and the MFC resulted in an increase in anticipatory fixations in the number and letter search task, i.e., an increase in the application of a good strategy in this task. We interpret these results as a compensatory strategy to account for TMS-induced deficits in attentional switching when faced with high switching demands. After inhibition of the lDLPFC, an increase in regressive fixations was found in the number and letter search task. In the context of high working memory demands, this strategy appears to support TMS-induced working memory deficits. Combining an experimental TMS approach with the recording of eye movements proved sensitive to discrete decrements of executive functions and allows pinpointing the functional organization of the frontal lobes.
Resumo:
In this review, the neural underpinnings of the experience of presence are outlined. Firstly, it is shown that presence is associated with activation of a distributed network, which includes the dorsal and ventral visual stream, the parietal cortex, the premotor cortex, mesial temporal areas, the brainstem and the thalamus. Secondly, the dorsolateral prefrontal cortex (DLPFC) is identified as a key node of the network as it modulates the activity of the network and the associated experience of presence. Thirdly, children lack the strong modulatory influence of the DLPFC on the network due to their unmatured frontal cortex. Fourthly, it is shown that presence-related measures are influenced by manipulating the activation in the DLPFC using transcranial direct current stimulation (tDCS) while participants are exposed to the virtual roller coaster ride. Finally, the findings are discussed in the context of current models explaining the experience of presence, the rubber hand illusion, and out-of-body experiences.
Resumo:
Despite the increased use of intracranial neuromonitoring during experimental subarachnoid hemorrhage (SAH), coordinates for probe placement in rabbits are lacking. This study evaluates the safety and reliability of using outer skull landmarks to identify locations for placement of cerebral blood flow (CBF) and intraparenchymal intracranial pressure (ICP) probes. Experimental SAH was performed in 17 rabbits using an extracranial-intracranial shunt model. ICP probes were placed in the frontal lobe and compared to measurements recorded from the olfactory bulb. CBF probes were placed in various locations in the frontal cortex anterior to the coronary suture. Insertion depth, relation to the ventricular system, and ideal placement location were determined by post-mortem examination. ICP recordings at the time of SAH from the frontal lobe did not differ significantly from those obtained from the right olfactory bulb. Ideal coordinates for intraparenchymal CBF probes in the left and right frontal lobe were found to be located 4.6±0.9 and 4.5±1.2 anterior to the bregma, 4.7±0.7mm and 4.7±0.5mm parasagittal, and at depths of 4±0.5mm and 3.9±0.5mm, respectively. The results demonstrate that the presented coordinates based on skull landmarks allow reliable placement of intraparenchymal ICP and CBF probes in rabbit brains without the use of a stereotactic frame.
Resumo:
Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.
Resumo:
Scrapie and bovine spongiform encephalopathy (BSE) are both prion diseases affecting ruminants, and these diseases do not share the same public health concerns. Surveillance of the BSE agent in small ruminants has been a great challenge, and the recent identification of diverse prion diseases in ruminants has led to the development of new methods for strain typing. In our study, using immunohistochemistry (IHC), we assessed the distribution of PrP(d) in the brains of 2 experimentally BSE-infected sheep with the ARQ/ARQ genotype. Distribution of PrP(d) in the brain, from the spinal cord to the frontal cortex, was remarkably similar in the 2 sheep despite different inoculation routes and incubation periods. Comparatively, overall PrP(d) brain distribution, evaluated by IHC, in 19 scrapie cases with the ARQ/ARQ, ARQ/VRQ, and VRQ/VRQ genotypes, in some cases showed similarities to the experimentally BSE-infected sheep. There was no exclusive neuroanatomical site with a characteristic and specific PrP(d) type of accumulation induced by the BSE agent. However, a detailed analysis of the topography, types, and intensity of PrP(d) deposits in the frontal cortex, striatum, piriform cortex, hippocampus, mesencephalon, and cerebellum allowed the BSE-affected sheep group to be distinguished from the 19 scrapie cases analyzed in our study. These results strengthen and emphasize the potential interest of PrP(d) brain mapping to help in identifying prion strains in small ruminants.
Resumo:
Excitatory amino acids are increasingly implicated in the pathogenesis of neuronal injury induced by a variety of CNS insults, such as ischemia, trauma, hypoglycemia, and epilepsy. Little is known about the role of amino acids in causing CNS injury in bacterial meningitis. Several amino acids were measured in cerebrospinal fluid and in microdialysis samples from the interstitial fluid of the frontal cortex in a rabbit model of pneumococcal meningitis. Cerebrospinal fluid concentrations of glutamate, aspartate, glycine, taurine, and alanine increased significantly in infected animals. Among the amino acids with known excitatory or inhibitory function, interstitial fluid concentrations of glutamate were significantly elevated (by 470%). Alanine, a marker for anaerobic glycolysis, also increased in the cortex of infected rabbits. The elevated glutamate concentrations in the brain extracellular space suggest that excitotoxic neuronal injury may play a role in bacterial meningitis.
Resumo:
Metabolic abnormalities during bacterial meningitis include hypoglycorrhachia and cerebrospinal fluid (CSF) lactate accumulation. The mechanisms by which these alterations occur within the central nervous system (CNS) are still incompletely delineated. To determine the evolution of these changes and establish the locus of abnormal metabolism during meningitis, glucose and lactate concentrations in brain interstitial fluid, CSF, and serum were measured simultaneously and sequentially during experimental pneumococcal meningitis in rabbits. Interstitial fluid samples were obtained from the frontal cortex and hippocampus by using in situ brain microdialysis, and serum and CSF were directly sampled. There was an increase of CSF lactate concentration, accompanied by increased local production of lactate in the brain, and a decrease of CSF-to-serum glucose ratio that was paralleled by a decrease in cortical glucose concentration. Brain microdialysate lactate concentration was not affected by either systemic lactic acidosis or artificially elevated CSF lactate concentration. These data support the hypothesis that the brain is a locus for anaerobic glycolysis during meningitis, resulting in increased lactate production and perhaps contributing to decreased tissue glucose concentration.
Resumo:
Decision-making and memory are fundamental processes for successful human behaviour. For eye movements, the frontal eye fields (FEF), the supplementary eye fields (SEF), the dorsolateral prefrontal cortex (DLPFC), the ventrolateral frontal cortex and the anterior cingulum are important for these cognitive processes. The online approach of transcranial magnetic stimulation (TMS), i.e., the application of magnetic pulses during planning and performance of saccades, allows interfering specifically with information processing of the stimulated region at a very specific time interval (chronometry of cortical processing). The paper presents studies, which showed the different roles of the FEF and DLPFC in antisaccade control. The critical time interval of DLPFC control seems to be before target onset since TMS significantly increased the percentage of antisaccade errors at that time interval. The FEF seems to be important for the triggering of correct antisaccades. Bilateral stimulation of the DLPFC could demonstrate parallel information-processing transfer in spatial working memory during memory-guided saccades.
Resumo:
We investigated how processing fluency and defamiliarization (the art of rendering familiar notions unfamiliar) contribute to the affective and esthetic processing of reading in an event-related functional magnetic-resonance-imaging experiment.We compared the neural correlates of processing (a) familiar German proverbs, (b) unfamiliar proverbs, (c) defamiliarized variations with altered content relative to the original proverb (proverb-variants), (d) defamiliarized versions with unexpected wording but the same content as the original proverb (proverb-substitutions), and (e) non-rhetorical sentences. Here, we demonstrate that defamiliarization is an effectiveway of guiding attention, but that the degree of affective involvement depends on the type of defamiliarization: enhanced activation in affect-related regions (orbito-frontal cortex, medPFC) was found only if defamiliarization altered the content of the original proverb. Defamiliarization on the level of wording was associated with attention processes and error monitoring. Although proverb-variants evoked activation in affect-related regions, familiar proverbs received the highest beauty ratings.
Resumo:
Background The brain reward circuitry innervated by dopamine is critically disturbed in schizophrenia. This study aims to investigate the role of dopamine-related brain activity during prediction of monetary reward and loss in first episode schizophrenia patients. Methods We measured blood–oxygen-level dependent (BOLD) activity in 10 patients with schizophrenia (SCH) and 12 healthy controls during dopamine depletion with α-methylparatyrosine (AMPT) and during a placebo condition (PLA). Results AMPT reduced the activation of striatal and cortical brain regions in SCH. In SCH vs. controls reduced activation was found in the AMPT condition in several regions during anticipation of reward and loss, including areas of the striatum and frontal cortex. In SCH vs. controls reduced activation of the superior temporal gyrus and posterior cingulate was observed in PLA during anticipation of rewarding stimuli. PLA patients had reduced activation in the ventral striatum, frontal and cingulate cortex in anticipation of loss. The findings of reduced dopamine-related brain activity during AMPT were verified by reduced levels of dopamine in urine, homovanillic-acid in plasma and increased prolactin levels. Conclusions Our results indicate that dopamine depletion affects functioning of the cortico-striatal reward circuitry in SCH. The findings also suggest that neuronal functions associated with dopamine neurotransmission and attribution of salience to reward predicting stimuli are altered in schizophrenia.
Resumo:
Music is an intriguing stimulus widely used in movies to increase the emotional experience. However, no brain imaging study has to date examined this enhancement effect using emotional pictures (the modality mostly used in emotion research) and musical excerpts. Therefore, we designed this functional magnetic resonance imaging study to explore how musical stimuli enhance the feeling of affective pictures. In a classical block design carefully controlling for habituation and order effects, we presented fearful and sad pictures (mostly taken from the IAPS) either alone or combined with congruent emotional musical excerpts (classical pieces). Subjective ratings clearly indicated that the emotional experience was markedly increased in the combined relative to the picture condition. Furthermore, using a second-level analysis and regions of interest approach, we observed a clear functional and structural dissociation between the combined and the picture condition. Besides increased activation in brain areas known to be involved in auditory as well as in neutral and emotional visual-auditory integration processes, the combined condition showed increased activation in many structures known to be involved in emotion processing (including for example amygdala, hippocampus, parahippocampus, insula, striatum, medial ventral frontal cortex, cerebellum, fusiform gyrus). In contrast, the picture condition only showed an activation increase in the cognitive part of the prefrontal cortex, mainly in the right dorsolateral prefrontal cortex. Based on these findings, we suggest that emotional pictures evoke a more cognitive mode of emotion perception, whereas congruent presentations of emotional visual and musical stimuli rather automatically evoke strong emotional feelings and experiences.
Resumo:
Using electroencephalography (EEG), psychophysiology, and psychometric measures, this is the first study which investigated the neurophysiological underpinnings of spatial presence. Spatial presence is considered a sense of being physically situated within a spatial environment portrayed by a medium (e.g., television, virtual reality). Twelve healthy children and 11 healthy adolescents were watching different virtual roller coaster scenarios. During a control session, the roller coaster cab drove through a horizontal roundabout track. The following realistic roller coaster rides consisted of spectacular ups, downs, and loops. Low-resolution brain electromagnetic tomography (LORETA) and event-related desynchronization (ERD) were used to analyze the EEG data. As expected, we found that, compared to the control condition, experiencing a virtual roller coaster ride evoked in both groups strong SP experiences, increased electrodermal reactions, and activations in parietal brain areas known to be involved in spatial navigation. In addition, brain areas that receive homeostatic afferents from somatic and visceral sensations of the body were strongly activated. Most interesting, children (as compared to adolescents) reported higher spatial presence experiences and demonstrated a different frontal activation pattern. While adolescents showed increased activation in prefrontal areas known to be involved in the control of executive functions, children demonstrated a decreased activity in these brain regions. Interestingly, recent neuroanatomical and neurophysiological studies have shown that the frontal brain continues to develop to adult status well into adolescence. Thus, the result of our study implies that the increased spatial presence experience in children may result from the not fully developed control functions of the frontal cortex.
Resumo:
BACKGROUND Nicotine addiction is a major public health problem and is associated with primary glutamatergic dysfunction. We recently showed marked global reductions in metabotropic glutamate receptor type 5 (mGluR5) binding in smokers and recent ex-smokers (average abstinence duration of 25 weeks). The goal of this study was to examine the role of mGluR5 downregulation in nicotine addiction by investigating a group of long-term ex-smokers (abstinence >1.5 years), and to explore associations between mGluR5 binding and relapse in recent ex-smokers. METHODS Images of mGluR5 receptor binding were acquired in 14 long-term ex-smokers, using positron emission tomography with radiolabeled [11C]ABP688, which binds to an allosteric site with high specificity. RESULTS Long-term ex-smokers and individuals who had never smoked showed no differences in mGluR5 binding in any of the brain regions examined. Long-term ex-smokers showed significantly higher mGluR5 binding than recent ex-smokers, most prominently in the frontal cortex (42%) and thalamus (57%). CONCLUSIONS Our findings suggest that downregulation of mGluR5 is a pathogenetic mechanism underlying nicotine dependence and the high relapse rate in individuals previously exposed to nicotine. Therefore, mGluR5 receptor binding appears to be an effective biomarker in smoking and a promising target for the discovery of novel medication for nicotine dependence and other substance-related disorders.
Distinct roles of cortical and pallidal β and γ frequencies in hemiparkinsonian and dyskinetic rats.
Resumo:
Enhanced β band (βB) activity, which is suppressed by levodopa (LD) treatment, has been demonstrated within the basal ganglia (BG) of Parkinson's disease (PD) patients. However, some data suggest that Parkinsonian symptoms are not directly related to this brain frequency and therefore, its causative role remains questionable. A less explored phenomenon is the link between the γ band (γB) and PD phenomenology. Here, we monitored the development of the oscillatory activity during chronic LD depletion and LD treatment in Parkinsonian and levodopa-induced dyskinesia (LID) in rats. We found a significant and bilateral power increase in the high βB frequencies (20-30Hz) within the first 10days after 6-hydroxydopamine (6-OHDA) lesion, which was in accordance with a significant depletion of dopaminergic fibers in the striatum. We also observed a clear-cut γB increase during LD treatment. The development of LID was characterized by a slight increase in the cumulative power of βB accompanied by a large augmentation in the γB frequency (60-80Hz). This latter effect reached a plateau in the frontal cortex bilaterally and the left globus pallidus after the second week of LD treatment. Our data suggest that the βB parallels the emergence of Parkinsonian signs and can be taken as a predictive sign of DA depletion, matching TH-staining reduction. On the other hand, the γB is strictly correlated to the development of LID. LD treatment had an opposite effect on βB and γB, respectively.