2 resultados para Fringe pattern traces

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vibrations, electromagnetic oscillations, and temperature drifts are among the main reasons for dephasing in matter-wave interferometry. Sophisticated interferometry experiments, e.g., with ions or heavy molecules, often require integration times of several minutes due to the low source intensity or the high velocity selection. Here we present a scheme to suppress the influence of such dephasing mechanisms—especially in the low-frequency regime—by analyzing temporal and spatial particle correlations available in modern detectors. Such correlations can reveal interference properties that would otherwise be washed out due to dephasing by external oscillating signals. The method is shown experimentally in a biprism electron interferometer where a perturbing oscillation is artificially introduced by a periodically varying magnetic field. We provide a full theoretical description of the particle correlations where the perturbing frequency and amplitude can be revealed from the disturbed interferogram. The original spatial fringe pattern without the perturbation can thereby be restored. The technique can be applied to lower the general noise requirements in matter-wave interferometers. It allows for the optimization of electromagnetic shielding and decreases the efforts for vibrational or temperature stabilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For crime scene investigation in cases of homicide, the pattern of bloodstains at the incident site is of critical importance. The morphology of the bloodstain pattern serves to determine the approximate blood source locations, the minimum number of blows and the positioning of the victim. In the present work, the benefits of the three-dimensional bloodstain pattern analysis, including the ballistic approximation of the trajectories of the blood drops, will be demonstrated using two illustrative cases. The crime scenes were documented in 3D, using the non-contact methods digital photogrammetry, tachymetry and laser scanning. Accurate, true-to-scale 3D models of the crime scenes, including the bloodstain pattern and the traces, were created. For the determination of the areas of origin of the bloodstain pattern, the trajectories of up to 200 well-defined bloodstains were analysed in CAD and photogrammetry software. The ballistic determination of the trajectories was performed using ballistics software. The advantages of this method are the short preparation time on site, the non-contact measurement of the bloodstains and the high accuracy of the bloodstain analysis. It should be expected that this method delivers accurate results regarding the number and position of the areas of origin of bloodstains, in particular the vertical component is determined more precisely than using conventional methods. In both cases relevant forensic conclusions regarding the course of events were enabled by the ballistic bloodstain pattern analysis.