31 resultados para Free cash flow to the firme
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that $v_2(\pi^+) < v_2(\pi^-)$ (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced $v_2$ splitting and its centrality dependence. We compare the results with the available experimental data.
Resumo:
OBJECTIVES This study compared clinical outcomes and revascularization strategies among patients presenting with low ejection fraction, low-gradient (LEF-LG) severe aortic stenosis (AS) according to the assigned treatment modality. BACKGROUND The optimal treatment modality for patients with LEF-LG severe AS and concomitant coronary artery disease (CAD) requiring revascularization is unknown. METHODS Of 1,551 patients, 204 with LEF-LG severe AS (aortic valve area <1.0 cm(2), ejection fraction <50%, and mean gradient <40 mm Hg) were allocated to medical therapy (MT) (n = 44), surgical aortic valve replacement (SAVR) (n = 52), or transcatheter aortic valve replacement (TAVR) (n = 108). CAD complexity was assessed using the SYNTAX score (SS) in 187 of 204 patients (92%). The primary endpoint was mortality at 1 year. RESULTS LEF-LG severe AS patients undergoing SAVR were more likely to undergo complete revascularization (17 of 52, 35%) compared with TAVR (8 of 108, 8%) and MT (0 of 44, 0%) patients (p < 0.001). Compared with MT, both SAVR (adjusted hazard ratio [adj HR]: 0.16; 95% confidence interval [CI]: 0.07 to 0.38; p < 0.001) and TAVR (adj HR: 0.30; 95% CI: 0.18 to 0.52; p < 0.001) improved survival at 1 year. In TAVR and SAVR patients, CAD severity was associated with higher rates of cardiovascular death (no CAD: 12.2% vs. low SS [0 to 22], 15.3% vs. high SS [>22], 31.5%; p = 0.037) at 1 year. Compared with no CAD/complete revascularization, TAVR and SAVR patients undergoing incomplete revascularization had significantly higher 1-year cardiovascular death rates (adj HR: 2.80; 95% CI: 1.07 to 7.36; p = 0.037). CONCLUSIONS Among LEF-LG severe AS patients, SAVR and TAVR improved survival compared with MT. CAD severity was associated with worse outcomes and incomplete revascularization predicted 1-year cardiovascular mortality among TAVR and SAVR patients.
Resumo:
Vasopressors, such as norepinephrine, are frequently used to treat perioperative hypotension. Increasing perfusion pressure with norepinephrine may increase blood flow in regions at risk. However, the resulting vasoconstriction could deteriorate microcirculatory blood flow in the intestinal tract and kidneys. This animal study was designed to investigate the effects of treating perioperative hypotension with norepinephrine during laparotomy with low fluid volume replacement.
Resumo:
Theta burst stimulation (TBS) is a novel variant of repetitive transcranial magnetic stimulation (rTMS), which induces changes in neuronal excitability persisting up to 1h. When elicited in the primary motor cortex, such physiological modulations might also have an impact on motor behavior. In the present study, we applied TBS in combination with pseudo continuous arterial spin labeling (pCASL) in order to address the question of whether TBS effects are measurable by means of changes in physiological parameters such as cerebral blood flow (CBF) and if TBS-induced plasticity can modify motor behavior. Twelve right-handed healthy subjects were stimulated using an inhibitory TBS protocol at subthreshold stimulation intensity targeted over the right motor cortex. The control condition consisted of within-subject Sham treatment in a crossover design. PCASL was performed before (pre TBS/pre Sham) and immediately after treatment (post TBS/post Sham). During the pCASL runs, the subjects performed a sequential fingertapping task with the left hand at individual maximum speed. There was a significant increase of CBF in the primary motor cortex after TBS, but not after Sham. It is assumed that inhibitory TBS induced a "local virtual lesion" which leads to the mobilization of more neuronal resources. There was no TBS-specific modulation in motor behavior, which might indicate that acute changes in brain plasticity caused by TBS are immediately compensated. This compensatory reaction seems to be observable at the metabolic, but not at the behavioral level.
Resumo:
A tetrathiafulvalene donor has been annulated to the bay region of perylenediimide through a 1H-benzo-[d]pyrrolo[1,2-a]imidazol-1-one spacer affording an extended pi-conjugated molecular dyad (TTF-PDI). To gain insight into its ground- and excited-state electronic properties, the reference compound Ph-PDI has been prepared via a direct Schiff-base condensation of N,N'-bis(1-octylnonyl) benzoperylene-1',2':3,4:9,10-hexacarboxylic-1',2'-anhydride-3,4:9,10-bis (imide) with benzene-1,2-diamine. Both the experimental and the computational (DFT) results indicate that TTF-PDI exhibits significant intramolecular electronic interactions giving rise to an efficient photoinduced charge-separation process. Free-energy calculations verify that the process from TTF to the singlet-excited state of PDI is exothermic in both polar and nonpolar solvents. Fast adiabatic electron-transfer processes of a compactly fused, pi-conjugated TTF-PDI dyad in benzonitrile, 2-methyltetrahydrofuran, anisole and toluene were observed by femtosecond transient absorption spectral measurements. The lifetimes of radical-ion pairs slightly increase with decreasing the solvent polarities, suggesting that the charge-recombination occurs in the Marcus inverted region. By utilizing the nanosecond transient absorption technique, the intermolecular electron-transfer process in a mixture of has been observed via the triplet excited PDI for the first time.
Resumo:
The default-mode network (DMN) was shown to have aberrant blood oxygenation-level-dependent (BOLD) activity in major depressive disorder (MDD). While BOLD is a relative measure of neural activity, cerebral blood flow (CBF) is an absolute measure. Resting-state CBF alterations have been reported in MDD. However, the association of baseline CBF and CBF fluctuations is unclear in MDD. Therefore, the aim was to investigate the CBF within the DMN in MDD, applying a strictly data-driven approach. In 22 MDD patients and 22 matched healthy controls, CBF was acquired using arterial spin labeling (ASL) at rest. A concatenated independent component analysis was performed to identify the DMN within the ASL data. The perfusion of the DMN and its nodes was quantified and compared between groups. The DMN was identified in both groups with high spatial similarity. Absolute CBF values within the DMN were reduced in MDD patients (p<0.001). However, after controlling for whole-brain gray matter CBF and age, the group difference vanished. In patients, depression severity was correlated with reduced perfusion in the DMN in the posterior cingulate cortex and the right inferior parietal lobe. Hypoperfusion within the DMN in MDD is not specific to the DMN. Still, depression severity was linked to DMN node perfusion, supporting a role of the DMN in depression pathobiology. The finding has implications for the interpretation of BOLD functional magnetic resonance imaging data in MDD.
Resumo:
Calculation of electrolyte-free water clearance (EFWC) allows for quantification of renal losses of free water and was shown to be helpful in the differential diagnosis of dysnatremias and might help in the correction of the electrolyte disorders. A modified EFWC formula (MEFWC) was described to be more accurate than the conventional one; however, it has never been evaluated clinically.
Resumo:
In Alzheimer's disease (AD) patients, episodic memory impairments are apparent, yet semantic memory difficulties are also observed. While the episodic pathology has been thoroughly studied, the neurophysiological mechanisms of the semantic impairments remain obscure. Semantic dementia (SD) is characterized by isolated semantic memory deficits. The present study aimed to find an early marker of mild AD and SD by employing a semantic priming paradigm during electroencephalogram recordings. Event-related potentials (ERP) of early (P1, N1) and late (N400) word processing stages were obtained to measure semantic memory functions. Separately, baseline cerebral blood flow (CBF) was acquired with arterial spin labeling. Thus, the analysis focused on linear regressions of CBF with ERP topographical similarity indices in order to find the brain structures that showed altered baseline functionality associated with deviant ERPs. All participant groups showed semantic priming in their reaction times. Furthermore, decreased CBF in the temporal lobes was associated with abnormal N400 topography. No significant CBF clusters were found for the early ERPs. Taken together, the neurophysiological results suggested that the automatic spread of activation during semantic word processing was preserved in mild dementia, while controlled access to the words was impaired. These findings suggested that N400-topography alterations might be a potential marker for the detection of early dementia. Such a marker could be beneficial for differential diagnosis due to its low cost and non-invasive application as well as its relationship with semantic memory dysfunctions that are closely associated to the cortical deterioration in regions crucial for semantic word processing.
Resumo:
In a recent study of the self-adjoint extensions of the Hamiltonian of a particle confined to a finite region of space, in which we generalized the Heisenberg uncertainty relation to a finite volume, we encountered bound states localized at the wall of the cavity. In this paper, we study this situation in detail both for a free particle and for a hydrogen atom centered in a spherical cavity. For appropriate values of the self-adjoint extension parameter, the bound states localized at the wall resonate with the standard hydrogen bound states. We also examine the accidental symmetry generated by the Runge–Lenz vector, which is explicitly broken in a spherical cavity with general Robin boundary conditions. However, for specific radii of the confining sphere, a remnant of the accidental symmetry persists. The same is true for an electron moving on the surface of a finite circular cone, bound to its tip by a 1/r1/r potential.
Resumo:
OBJECTIVE: The use of vasopressors for treatment of hypotension in sepsis may have adverse effects on microcirculatory blood flow in the gastrointestinal tract. The aim of this study was to measure the effects of three vasopressors, commonly used in clinical practice, on microcirculatory blood flow in multiple abdominal organs in sepsis. DESIGN: Random order, cross-over design. SETTING: University laboratory. SUBJECTS: Eight sedated and mechanically ventilated pigs. INTERVENTIONS: Pigs were exposed to fecal peritonitis-induced septic shock. Mesenteric artery flow was measured using ultrasound transit time flowmetry. Microcirculatory flow was measured in gastric, jejunal, and colon mucosa; jejunal muscularis; and pancreas, liver, and kidney using multiple-channel laser Doppler flowmetry. Each animal received a continuous intravenous infusion of epinephrine, norepinephrine, and phenylephrine in a dose increasing mean arterial pressure by 20%. The animals were allowed to recover for 60 mins after each drug before the next was started. MEASUREMENTS AND MAIN RESULTS: During infusion of epinephrine (0.8 +/- 0.2 mug/kg/hr), mean arterial pressure increased from 66 +/- 5 to 83 +/- 5 mm Hg and cardiac index increased by 43 +/- 9%. Norepinephrine (0.7 +/- 0.3 mug/kg/hr) increased mean arterial pressure from 70 +/- 4 to 87 +/- 5 mm Hg and cardiac index by 41 +/- 8%. Both agents caused a significant reduction in superior mesenteric artery flow (11 +/- 4%, p < .05, and 26 +/- 6%, p < .01, respectively) and in microcirculatory blood flow in the jejunal mucosa (21 +/- 5%, p < .01, and 23 +/- 3%, p < .01, respectively) and in the pancreas (16 +/- 3%, p < .05, and 8 +/- 3%, not significant, respectively). Infusion of phenylephrine (3.1 +/- 1.0 mug/kg/min) increased mean arterial pressure from 69 +/- 5 to 85 +/- 6 mm Hg but had no effects on systemic, regional, or microcirculatory flow except for a 30% increase in jejunal muscularis flow (p < .01). CONCLUSIONS: Administration of the vasopressors phenylephrine, epinephrine, and norepinephrine failed to increase microcirculatory blood flow in most abdominal organs despite increased perfusion pressure and-in the case of epinephrine and norepinephrine-increased systemic blood flow. In fact, norepinephrine and epinephrine appeared to divert blood flow away from the mesenteric circulation and decrease microcirculatory blood flow in the jejunal mucosa and pancreas. Phenylephrine, on the other hand, appeared to increase blood pressure without affecting quantitative blood flow or distribution of blood flow.
Resumo:
We investigated the association between exhaustion and the habituation of free cortisol responses to repeated stress exposure. The study comprised 25 healthy male subjects (38-59 years) who were confronted three times with the Trier Social Stress Test. Mean cortisol responses showed the well-known general habituation effect. A two-way interaction day by exhaustion (p<0.05) indicated that mean cortisol responses vary across stress sessions depending on the extent of exhaustion. Linear regression revealed a negative dose-response relationship between exhaustion and the degree of habituation (p<0.02). We identified 19 individuals showing a response habituation (negative slope) and 6 individuals showing a response sensitization over the three sessions (positive slope) with the latter reporting higher exhaustion scores. It might be hypothesized that impaired habituation to repeated exposure to the same stressor could reflect a state of increased vulnerability for allostatic load. Absence of normal habituation might be one potential mechanism how exhaustion relates to increased disease vulnerability.