17 resultados para Fraser Coast, water processes, stable isotopes

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth-age relationship of the sediment core was established using 14 AMS C-14 dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (delta O-18(C)) increased by similar to 6 parts per thousand at the onset of the Bolling (similar to 14,650 cal BP) and were similar to 2 parts per thousand lower during the Younger Dryas (similar to 12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, delta O-18(C) gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of O-18-depleted groundwater or river water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Here we present stable isotope data from three sediment records from lakes that lie along the Macedonian- Albanian border (Lake Prespa: 1 core, and Lake Ohrid: 2 cores). The records only overlap for the last 40 kyr, although the longest record contains the MIS 5/6 transition (Lake Ohrid). The sedimentary characteristics of both lakes differ significantly between the glacial and interglacial phases. At the end of MIS 6 Lake Ohrid’s water level was low (high �18Ocalcite) and, although productivity was increasing (high calcite content), the carbon supply was mainly from inorganic catchment rock sources (high �13Ccarb). During the last interglacial, calcite and TOC production and preservation increased, progressively lower �18Ocalcite suggest increase in humidity and lake levels until around 115 ka. During ca. 80 ka to 11 ka the lake records suggest cold conditions as indicated by negligible calcite precipitation and low organic matter content. In Lake Ohrid, �13Corg are complacent; in contrast, Lake Prespa shows consistently higher �13Corg suggesting a low oxidation of 13C-depleted organic matter in agreement with a general deterioration of climate conditions during the glacial. From 15 ka to the onset of the Holocene, calcite and TOC begin to increase, suggesting lake levels were probably low (high �18Ocalcite). In the Holocene (11 ka to present) enhanced productivity is manifested by high calcite and organic matter content. All three cores show an early Holocene characterised by low �18Ocalcite, apart from the very early Holocene phase in Prespa where the lowest �18Ocalcite occurs at ca. 7.5 ka, suggesting a phase of higher lake level only in (the more sensitive) Lake Prespa. From 6 ka, �18Ocalcite suggest progressive aridification, in agreement with many other records in the Mediterranean, although the uppermost sediments in one core records low �18Ocalcite which we interpret as a result of human activity. Overall, the isotope data present here confirm that these two big lakes have captured the large scale, low frequency palaeoclimate variation that is seen in Mediterranean lakes, although in detail there is much palaeoclimate information that could be gained, especially small scale, high frequency differences between this region and the Mediterranean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using stable isotope techniques to establish turnover rates for very low density lipoprotein (VLDL), a group of eight adult patients with growth hormone deficiency (GHD) exhibited an increased VLDL apoprotein B (apo B) secretion and decreased VLDL apoB metabolic clearance rate compared to controls. Such increased secretion is seen in some dyslipidemic states, including GHD, which are associated with atherosclerosis. The study of VLDL metabolism may provide a clue to the lipid metabolism disorder associated with GHD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pío XI, the largest glacier of the Southern Patagonia Icefield, reached its neoglacial maximum extent in 1994 and is one of the few glaciers in that area which is not retreating. In view of the recent warming it is important to understand glacier responses to climate changes. Due to its remoteness and the harsh conditions in Patagonia, no systematic mass balance studies have been performed. In this study we derived net accumulation rates for the period 2000–2006 from a 50 m (33.2 4 m weq) ice core collected in the accumulation area of Pío XI (2600 m a.s.l., 49°16'40"S, 73°21'14"W). Borehole temperatures indicate near temperate ice, but the average melt percent is only 16 ± 14%. Records of stable isotopes are well preserved and were used for identification of annual layers. Net accumulation rates range from 3.4–7.1 water equivalent (m weq) with an average of 5.8 m weq, comparable to precipitation amounts at the Chilean coast, but not as high as expected for the Icefield. Ice core stable isotope data correlate well with upper air temperatures and may be used as temperature proxy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive and noble gases dissolved in matrix pore water of low permeable crystalline bedrock were successfully extracted and characterized for the fist time based on drillcore samples from the Olkiluoto investigation site (SW Finland). Interaction between matrix pore water and fracture groundwater occurs predominately by diffusion. Changes in the chemical and isotopic composition of gases dissolved in fracture groundwater are transmitted and preserved in the pore water. Absolute concentrations, their ratios and the stable carbon isotope signature of hydrocarbon gases dissolved in pore water give valuable indications about the evolution of these gases in the nearby-flowing fracture groundwaters. Inert noble gases dissolved in matrix pore water and their isotopes combined with their in-situ production and accumulation rates deliver information about the residence time of pore water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transition from the Oldest Dryas to the Bølling around 14,685 cal yr BP was a period of extremely rapid climatic warming. From a single core of lake marl taken at Gerzensee (Switzerland) we studied the transition in stable isotopes of oxygen and carbon on bulk sediment and charophyte remains, as well as on monospecific samples of ostracods, after Pisidium a; in addition pollen, chironomids, and Cladocera were analyzed. The δ18O record serves as an estimate of mean air temperature, and by correlation to the one from NGRIP in Greenland it provides a timescale. The timing of responses: The statistically significant zone boundaries of the biostratigraphies are telescoped at the rapid increase of about 3‰ in δ18O at the onset of Bølling. Biotic responses may have occurred within sampling resolution (8 to 16 years), although younger zone boundaries are less synchronous. Gradual and longer-lasting responses include complex processes such as primary or secular succession. During the late-glacial interstadial of Bølling and Allerød, two stronger and two weaker cool phases were found. Biological processes involved in the responses occurred on levels of individuals (e.g. pollen productivity), of populations (increases or decreases, immigration, or extinction), and on the ecosystem level (species interactions such as facilitation or competition). Abiotic and biotic interactions include pedogenesis, nitrogen-fixation, nutrient cycling, catchment hydrology, water chemistry of the lake and albedo (controlled by the transition from tundra to forest). For the Swiss Plateau this major change in vegetation induced a change in the mammal fauna, which in turn led to changes in the tool-making by Paleolithic people.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he abundance and distribution of isotopes throughout the Solar System can be used to constrain the number and type of nucleosynthetic events that contributed material to the early nebula. Barium is particularly well suited to quantifying the degree of isotope heterogeneity in the Solar System because it comprises seven stable isotopes that were synthesized by three different nucleosynthetic processes (s-, r-, and p-processes), all of which contributed material to the Solar System. There is also potential contribution to 135Ba from short-lived radioisotope 135Cs, conclusive evidence for which is yet to be reported. Four Allende (CV3) Ca,Al-rich inclusions (CAI 1, CAI 2, CAI 4, CAI 5) and one Allende dark inclusion (DI) were analyzed for Ba isotope variability. Two CAIs (CAI 2 and CAI 5) display 135Ba excesses that are not accompanied by 137Ba anomalies. Calcium–aluminum-rich inclusion 1 displays a 135Ba excess that is possibly coupled with a 137Ba excess, and the remaining refractory inclusions (CAI 2 and DI) have terrestrial Ba isotope compositions. These Ba isotope data are presented in conjunction with published whole rock Ba isotope data from individual Allende CAIs. The enrichment in 135Ba and absence of coupled 137Ba excesses in CAI 2 and CAI 5 is interpreted to indicate that the anomalies are not purely nucleosynthetic in origin but also contain contributions (16–48 ppm) from the decay of short-lived 135Cs. The majority of Allende CAIs studied to date may also have similar contributions from 135Cs on the basis of higher than expected 135Ba excesses if the Ba isotope anomalies were purely nucleosynthetic in origin. The 135Ba anomalies appear not to be coupled with superchondritic Cs/Ba, which may imply that the contribution to 135Ba did not occur via in situ decay of live 135Cs. However, it is feasible that the CAIs had a superchondritic Cs/Ba during decay of 135Cs, but Cs was subsequently removed from the system during aqueous alteration on the parent body. An alternative scenario is the potential existence of a transient high-temperature reservoir having superchondritic Cs/Ba in the early Solar System while 135Cs was extant, which enabled a radiogenic 135Ba signature to develop in some early condensates. The nucleosynthetic source of 135Cs can be determined by reconciling the predicted astrophysical 135Cs abundance with its measured abundance in meteorites. Further, the currently accepted initial 135Cs/133Cs of the Solar System, [135Cs/133Cs]0, may be underestimated because the spread of Cs/Ba among samples is small and the range of excess 135Ba is limited thus leading to inaccuracies when estimating [135Cs/133Cs]0. If the initial meteoritic abundance of 135Cs was indeed higher than is currently thought, the most probable stellar source of short-lived radioisotopes was a nearby core-collapse supernova and/or the Wolf–Rayet wind driven by its progenitor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM) are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10), which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP). Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O)–temperature relationship varies between 0.3 and 0.6 (±0.08) ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP) to 40% (GRIP) lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.