14 resultados para Fractional diffusion equation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Patients suffering from cystic fibrosis (CF) show thick secretions, mucus plugging and bronchiectasis in bronchial and alveolar ducts. This results in substantial structural changes of the airway morphology and heterogeneous ventilation. Disease progression and treatment effects are monitored by so-called gas washout tests, where the change in concentration of an inert gas is measured over a single or multiple breaths. The result of the tests based on the profile of the measured concentration is a marker for the severity of the ventilation inhomogeneity strongly affected by the airway morphology. However, it is hard to localize underlying obstructions to specific parts of the airways, especially if occurring in the lung periphery. In order to support the analysis of lung function tests (e.g. multi-breath washout), we developed a numerical model of the entire airway tree, coupling a lumped parameter model for the lung ventilation with a 4th-order accurate finite difference model of a 1D advection-diffusion equation for the transport of an inert gas. The boundary conditions for the flow problem comprise the pressure and flow profile at the mouth, which is typically known from clinical washout tests. The natural asymmetry of the lung morphology is approximated by a generic, fractal, asymmetric branching scheme which we applied for the conducting airways. A conducting airway ends when its dimension falls below a predefined limit. A model acinus is then connected to each terminal airway. The morphology of an acinus unit comprises a network of expandable cells. A regional, linear constitutive law describes the pressure-volume relation between the pleural gap and the acinus. The cyclic expansion (breathing) of each acinus unit depends on the resistance of the feeding airway and on the flow resistance and stiffness of the cells themselves. Special care was taken in the development of a conservative numerical scheme for the gas transport across bifurcations, handling spatially and temporally varying advective and diffusive fluxes over a wide range of scales. Implicit time integration was applied to account for the numerical stiffness resulting from the discretized transport equation. Local or regional modification of the airway dimension, resistance or tissue stiffness are introduced to mimic pathological airway restrictions typical for CF. This leads to a more heterogeneous ventilation of the model lung. As a result the concentration in some distal parts of the lung model remains increased for a longer duration. The inert gas concentration at the mouth towards the end of the expirations is composed of gas from regions with very different washout efficiency. This results in a steeper slope of the corresponding part of the washout profile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New treatment options for Niemann-Pick Type C (NPC) have recently become available. To assess the efficiency and efficacy of these new treatment markers for disease status and progression are needed. Both the diagnosis and the monitoring of disease progression are challenging and mostly rely on clinical impression and functional testing of horizontal eye movements. Diffusion tensor imaging (DTI) provides information about the microintegrity especially of white matter. We show here in a case report how DTI and measures derived from this imaging method can serve as adjunct quantitative markers for disease management in Niemann-Pick Type C. Two approaches are taken--first, we compare the fractional anisotropy (FA) in the white matter globally between a 29-year-old NPC patient and 18 healthy age-matched controls and show the remarkable difference in FA relatively early in the course of the disease. Second, a voxelwise comparison of FA values reveals where white matter integrity is compromised locally and demonstrate an individualized analysis of FA changes before and after 1year of treatment with Miglustat. This method might be useful in future treatment trials for NPC to assess treatment effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To assess possible association between intrinsic structural damage and clinical disability by correlating spinal cord diffusion-tensor (DT) imaging data with electrophysiological parameters in patients with a diagnosis of multiple sclerosis (MS). Materials and Methods: This study was approved by the local ethical committee according to the declaration of Helsinki and written informed consent was obtained. DT images and T1- and T2-weighted images of the spinal cord were acquired in 28 healthy volunteers and 41 MS patients. Fractional anisotropy (FA) and apparent diffusion coefficients were evaluated in normal-appearing white matter (NAWM) at the cervical level and were correlated with motor-evoked potentials (n = 34). Asymmetry index was calculated for FA values with corresponding left and right regions of interest as percentage of the absolute difference between these values relative to the sum of the respective FA values. Statistical analysis included Spearman rank correlations, Mann-Whitney test, and reliability analysis. Results: Healthy volunteers had low asymmetry index (1.5%-2.2%). In MS patients, structural abnormalities were reflected by asymmetric decrease of FA (asymmetry index: 3.6%; P = .15). Frequently asymmetrically affected among MS patients was left and right central motor conduction time (CMCT) to abductor digiti minimi muscle (ADMM) (asymmetry index, 15%-16%) and tibialis anterior muscle (TAM) (asymmetry index, 9.5%-14.1%). Statistically significant correlations of functional (ie, electrophysiological) and structural (ie, DT imaging) asymmetries were found (P = .005 for CMCT to ADMM; P = .007 for CMCT to TAM) for the cervical lateral funiculi, which comprise the crossed pyramidal tract. Interobserver reliability for DT imaging measurements was excellent (78%-87%). Conclusion: DT imaging revealed asymmetric anatomic changes in spinal cord NAWM, which corresponded to asymmetric electrophysiological deficits for both arms and legs, and reflected a specific structure-function relationship in the human spinal cord. © RSNA, 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to investigate the relationship between regional connectivity in the brain white matter and the presence of psychotic personality traits, in healthy subjects with psychotic traits. Thirteen healthy controls were administered the MMPI-2, to assess psychotic traits and, according to MMPI results, a dichotomization into a group of "high-psychotic" and "low-psychotic" was performed. Diffusion tensor imaging (DTI) was used as a non-invasive measure, in order to obtain information about the fractional anisotropy (FA), an intravoxel index of local connectivity and, by means of a voxelwise approach, the between-group differences of the FA values were calculated. The "high-psychotic" group showed higher FA in the left arcuate fasciculus. Subjects with low scores for psychotic traits had significantly higher FA in the corpus callosum, right arcuate fasciculus, and fronto-parietal fibers. In line with previous brain imaging studies of schizophrenia spectrum disorders, our results suggest that psychotic personality traits are related to altered connectivity and brain asymmetry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A multimodal MR study including relaxometry, diffusion tensor imaging (DTI), and MR spectroscopy was performed on patients with classical phenylketonuria (PKU) and matched controls, to improve our understanding of white matter (WM) lesions. Relaxometry yields information on myelin loss or malformation and may substantiate results from DTI attributed to myelin changes. Relaxometry was used to determine four brain compartments in normal-appearing brain tissue (NABT) and in lesions: water in myelin bilayers (myelin water, MW), water in gray matter (GM), water in WM, and water with long relaxation times (cerebrospinal fluid [CSF]-like signals). DTI yielded apparent diffusion coefficients (ADCs) and fractional anisotropies. MW and WM content were reduced in NABT and in lesions of PKU patients, while CSF-like signals were significantly increased. ADC values were reduced in PKU lesions, but also in the corpus callosum. Diffusion anisotropy was reduced in lesions because of a stronger decrease in the longitudinal than in the transverse diffusion. WM content and CSF-like components in lesions correlated with anisotropy and ADC. ADC values in lesions and in the corpus callosum correlated negatively with blood and brain phenylalanine (Phe) concentrations. Intramyelinic edema combined with vacuolization is a likely cause of the WM alterations. Correlations between diffusivity and Phe concentrations confirm vulnerability of WM to high Phe concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary spastic paraplegia (HSP) associated with thin corpus callosum is a rare autosomal recessive neurodegenerative disorder characterized by an abnormally thin corpus callosum, normal motor development, slowly progressive spastic paraparesis and cognitive deterioration. To investigate and localize abnormalities in the brains of two Chinese patients with HSP-TCC, with mutations in the spatacsin gene. Diffusion tensor imaging (DTI) was used to determine the mean diffusion (MD) and fractional anisotropy (FA) in the brains of the patients in comparison to 20 healthy subjects. Voxel-based analysis (VBA) of both the diffusion and anisotropy values were performed using statistical parametric mapping (SPM). Significant changes with MD increase and FA reduction were found in the already known lesions including the corpus callosum, cerebellum and thalamus. In addition, changes were also found in regions that appear to be normal in conventional MRI, such as the brain stem, internal capsule, cingulum and subcortical white matter including superior longitudinal fascicle and inferior longitudinal fascicle. Neither increase in FA nor reduction in MD was detected in the brain. Our study provides clear in vivo MR imaging evidence of a more widespread brain involvement of HSP-TCC. MD is more sensitive than FA in detecting lesions in thalamus and subcortical white matter, suggesting that MD may be a better marker of the disease progression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To study the apparent diffusivity and its directionality for metabolites of skeletal muscle in humans in vivo by (1) H magnetic resonance spectroscopy. METHODS The diffusion tensors were determined on a 3 Tesla MR system using optimized acquisition and processing methods including an adapted STEAM sequence with orientation-dependent diffusion weighting, pulse-triggering with individually adapted delays, eddy-current correction schemes, median filtering, and simultaneous prior-knowledge fitting of all related spectra. RESULTS The average apparent diffusivities, as well as the fractional anisotropies of taurine (ADCav  = 0.74 × 10(-3) s/mm(2) , FA = 0.46), creatine (ADCav  = 0.41 × 10(-3)  s/mm(2) , FA = 0.33), trimethylammonium compounds (ADCav  = 0.48 × 10(-3)  s/mm(2) , FA = 0.34), carnosine (ADCav  = 0.46 × 10(-3)  s/mm(2) , FA = 0.47), and water (ADCav  = 1.5 × 10(-3)  s/mm(2) , FA = 0.36) were estimated. The diffusivities of most metabolites and water were significantly different from each other. Diffusion was found to be anisotropic and the diffusion tensors showed tensor correlation coefficients close to 1 and were hence found to be essentially coaligned. The magnitudes of apparent metabolite diffusivities were largely ordered according to molecular weight, with taurine as the smallest molecule diffusing fastest, both along and across the fiber direction. CONCLUSION Diffusivities, directional dependence of diffusion and fractional anisotropies of (1) H MRS-visible muscle metabolites were presented. It was shown that metabolites share diffusion directionality with water and have similar fractional anisotropies, hinting at similar diffusion barriers. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To investigate if non-rigid image-registration reduces motion artifacts in triggered and non-triggered diffusion tensor imaging (DTI) of native kidneys. A secondary aim was to determine, if improvements through registration allow for omitting respiratory-triggering. METHODS: Twenty volunteers underwent coronal DTI of the kidneys with nine b-values (10-700 s/mm2 ) at 3 Tesla. Image-registration was performed using a multimodal nonrigid registration algorithm. Data processing yielded the apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA). For comparison of the data stability, the root mean square error (RMSE) of the fitting and the standard deviations within the regions of interest (SDROI ) were evaluated. RESULTS: RMSEs decreased significantly after registration for triggered and also for non-triggered scans (P < 0.05). SDROI for ADC, FA, and FP were significantly lower after registration in both medulla and cortex of triggered scans (P < 0.01). Similarly the SDROI of FA and FP decreased significantly in non-triggered scans after registration (P < 0.05). RMSEs were significantly lower in triggered than in non-triggered scans, both with and without registration (P < 0.05). CONCLUSION: Respiratory motion correction by registration of individual echo-planar images leads to clearly reduced signal variations in renal DTI for both triggered and particularly non-triggered scans. Secondarily, the results suggest that respiratory-triggering still seems advantageous.J. Magn. Reson. Imaging 2014. (c) 2014 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. METHODS Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. RESULTS Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. CONCLUSIONS Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. MATERIALS AND METHODS After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. RESULTS Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). CONCLUSION Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. KEY POINTS • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE To investigate if image registration of diffusion tensor imaging (DTI) allows omitting respiratory triggering for both transplanted and native kidneys MATERIALS AND METHODS: Nine kidney transplant recipients and eight healthy volunteers underwent renal DTI on a 3T scanner with and without respiratory triggering. DTI images were registered using a multimodal nonrigid registration algorithm. Apparent diffusion coefficient (ADC), the contribution of perfusion (FP ), and the fractional anisotropy (FA) were determined. Relative root mean square errors (RMSE) of the fitting and the standard deviations of the derived parameters within the regions of interest (SDROI ) were evaluated as quality criteria. RESULTS Registration significantly reduced RMSE in all DTI-derived parameters of triggered and nontriggered measurements in cortex and medulla of both transplanted and native kidneys (P < 0.05 for all). In addition, SDROI values were lower with registration for all 16 parameters in transplanted kidneys (14 of 16 SDROI values were significantly reduced, P < 0.04) and for 15 of 16 parameters in native kidneys (9 of 16 SDROI values were significantly reduced, P < 0.05). Comparing triggered versus nontriggered DTI in transplanted kidneys revealed no significant difference for RMSE (P > 0.14) and for SDROI (P > 0.13) of all parameters. In contrast, in native kidneys relative RMSE from triggered scans were significantly lower than those from nontriggered scans (P < 0.02), while SDROI was slightly higher in triggered compared to nontriggered measurements in 15 out of 16 comparisons (significantly for two, P < 0.05). CONCLUSION Registration improves the quality of DTI in native and transplanted kidneys. Diffusion parameters in renal allografts can be measured without respiratory triggering. In native kidneys, respiratory triggering appears advantageous. J. Magn. Reson. Imaging 2016.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partial differential equation (PDE) solvers are commonly employed to study and characterize the parameter space for reaction-diffusion (RD) systems while investigating biological pattern formation. Increasingly, biologists wish to perform such studies with arbitrary surfaces representing ‘real’ 3D geometries for better insights. In this paper, we present a highly optimized CUDA-based solver for RD equations on triangulated meshes in 3D. We demonstrate our solver using a chemotactic model that can be used to study snakeskin pigmentation, for example. We employ a finite element based approach to perform explicit Euler time integrations. We compare our approach to a naive GPU implementation and provide an in-depth performance analysis, demonstrating the significant speedup afforded by our optimizations. The optimization strategies that we exploit could be generalized to other mesh based processing applications with PDE simulations.