4 resultados para Formulation in pressures and displacements
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE: To compare the performance of dynamic contour tonometry (DCT) and Goldmann applanation tonometry (GAT) in measuring intraocular pressure in eyes with irregular corneas. METHODS: GAT and DCT measures were taken in 30 keratoconus and 29 postkeratoplasty eyes of 35 patients after pachymetry and corneal topography. Regression and correlation analyses were performed between both tonometry methods and between tonometry methods and corneal parameters. Bland-Altman plots were constructed. RESULTS: DCT values were significantly higher than GAT values in both study groups: +4.1 +/- 2.3 mm Hg (mean +/- SD) in keratoconus and +3.1 +/- 2.5 mm Hg after keratoplasty. In contrast to DCT, GAT values were significantly higher in postkeratoplasty eyes than in keratoconus. The correlation between the 2 tonometry methods was moderate in keratoconus (Kendall correlation coefficient, tau = 0.34) as well in postkeratoplasty eyes (tau = 0.66). The +/-1.96 SD span of the DCT-GAT differences showed a considerable range: -0.42 to +8.70 mm Hg in keratoconus and -1.87 to +7.98 mm Hg in postkeratoplasty eyes. In the keratoconus group, neither DCT nor GAT correlated significantly with any of the corneal parameters. In the postkeratoplasty group, both DCT and GAT measures showed a moderate positive correlation with corneal steepness, but only DCT had a significant negative correlation with the central corneal thickness (tau = -0.33). CONCLUSIONS: DCT measured significantly higher intraocular pressures than GAT in keratoconus and postkeratoplasty eyes. DCT and GAT measures varied considerably, and DCT was not less dependent on biomechanical properties of irregular corneas than GAT.
Resumo:
In recent years, implementation of 68Ga-radiometalated peptides for PET imaging of cancer has attracted the attention of clinicians. Herein, we propose the use of 44Sc (half-life = 3.97 h, average β+ energy [Eβ+av] = 632 keV) as a valuable alternative to 68Ga (half-life = 68 min, Eβ+av = 830 keV) for imaging and dosimetry before 177Lu-based radionuclide therapy. The aim of the study was the preclinical evaluation of a folate conjugate labeled with cyclotron-produced 44Sc and its in vitro and in vivo comparison with the 177Lu-labeled pendant. Methods: 44Sc was produced via the 44Ca(p,n)44Sc nuclear reaction at a cyclotron (17.6 ± 1.8 MeV, 50 μA, 30 min) using an enriched 44Ca target (10 mg 44CaCO3, 97.00%). Separation from the target material was performed by a semiautomated process using extraction chromatography and cation exchange chromatography. Radiolabeling of a DOTA-folate conjugate (cm09) was performed at 95°C within 10 min. The stability of 44Sc-cm09 was tested in human plasma. 44Sc-cm09 was investigated in vitro using folate receptor–positive KB tumor cells and in vivo by PET/CT imaging of tumor-bearing mice Results: Under the given irradiation conditions, 44Sc was obtained in a maximum yield of 350 MBq at high radionuclide purity (>99%). Semiautomated isolation of 44Sc from 44Ca targets allowed formulation of up to 300 MBq of 44Sc in a volume of 200–400 μL of ammonium acetate/HCl solution (1 M, pH 3.5–4.0) within 10 min. Radiolabeling of cm09 was achieved with a radiochemical yield of greater than 96% at a specific activity of 5.2 MBq/nmol. In vitro, 44Sc-cm09 was stable in human plasma over the whole time of investigation and showed folate receptor–specific binding to KB tumor cells. PET/CT images of mice injected with 44Sc-cm09 allowed excellent visualization of tumor xenografts. Comparison of cm09 labeled with 44Sc and 177Lu revealed almost identical pharmacokinetics. Conclusion: This study presents a high-yield production and efficient separation method of 44Sc at a quality suitable for radiolabeling of DOTA-functionalized biomolecules. An in vivo proof-of-concept study using a DOTA-folate conjugate demonstrated the excellent features of 44Sc for PET imaging. Thus, 44Sc is a valid alternative to 68Ga for imaging and dosimetry before 177Lu-radionuclide tumor therapy.
Resumo:
In this paper, we are concerned about the short-term scheduling of industrial make-and-pack production processes. The planning problem consists in minimizing the production makespan while meeting given end-product demands. Sequence-dependent changeover times, multi-purpose storage units with finite capacities, quarantine times, batch splitting, partial equipment connectivity, material transfer times, and a large number of operations contribute to the complexity of the problem. Known MILP formulations cover all technological constraints of such production processes, but only small problem instances can be solved in reasonable CPU times. In this paper, we develop a heuristic in order to tackle large instances. Under this heuristic, groups of batches are scheduled iteratively using a novel MILP formulation; the assignment of the batches to the groups and the scheduling sequence of the groups are determined using a priority rule. We demonstrate the applicability by means of a real-world production process.