3 resultados para Formaldehyde

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The outcome of light-based therapeutic approaches depends on light propagation in biological tissues, which is governed by their optical properties. The objective of this study was to quantify optical properties of brain tissue in vivo and postmortem and assess changes due to tissue handling postmortem. The study was carried out on eight female New Zealand white rabbits. The local fluence rate was measured in the VIS/NIR range in the brain in vivo, just postmortem, and after six weeks’ storage of the head at −20∘C or in 10% formaldehyde solution. Only minimal changes in the effective attenuation coefficient μeff were observed for two methods of sacrifice, exsanguination or injection of KCl. Under all tissue conditions, μeff decreased with increasing wavelengths. After long-term storage for six weeks at −20∘C, μeff decreased, on average, by 15 to 25% at all wavelengths, while it increased by 5 to 15% at all wavelengths after storage in formaldehyde. We demonstrated that μeff was not very sensitive to the method of animal sacrifice, that tissue freezing significantly altered tissue optical properties, and that formalin fixation might affect the tissue’s optical properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of polyoxymethylene (POM) in cometary grains has been debated years ago. Although never proven, its presence can not be excluded. Rosetta, the ESA mission to comet 67P/Churyumov–Gerasimenko, may answer this question. On board the spacecraft, COSIMA (COmetary Secondary Ion Mass Analyzer) will analyze the grains ejected from the nucleus using a Time Of Flight Secondary Ion Mass Spectrometer (TOF-SIMS). In this paper we report the extent to which COSIMA will be able to detect POM if this compound is present on cometary grains. We have analyzed two kinds of POM polymers with a laboratory model of COSIMA. Positive mass spectra display alternating sequence of peaks with a separation of 30.011 Da between 1 and 600 Da related to formaldehyde and its oligomers but also to the fragmentation of these oligomers. The separation of 30.011 Da of numbers peaks, corresponding to the fragmentation into H2CO is characteristic of POM and we show that it could be highlight by mathematical treatment. POM lifetime on COSIMA targets have also been studied as POM is thermally instable. It can be concluded that the cometary grains analysis have to be planned not too long after their collection in order to maximize the chances to detect POM. This work was supported by the Centre National d'Etudes Spatiales (CNES).