28 resultados para Foreland

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive glaciers repeatedly occupied the northern Alpine Foreland during the Pleistocene and left a strongly glacially overprinted low slope landscape. Only few islands appeared as nunataks standing above the surface of the large piedmont glacier lobes. These nunatak areas kept their original shape, manifested in steep catchments with mean slopes up to 33 . Even though not glaciated, these catchments where significantly affected by base-level changes occurring as a consequence of phases of glacier advances and retreats. Both domains, the glacially eroded and non-eroded, are therefore prone to different mechanisms and time-scales of fluvial and colluvial re-adjustment. In this study we investigate these effects by exploring the spatial distribution and magnitude of denudation in the Hörnli region of the eastern Swiss Alpine Foreland in the present Interglacial. The area represents both domains in a relatively small area with largely uniform tectonic, lithologic and climatic conditions. The differences in Holocene andscape evolution are investigated using topographic analyses and catchment-averaged denudation rates derived from 10Be concentrations in fluvial quartz sand. We find that in formerly non-glaciated, fluvially dominated catchments close hillslope-channel coupling prevails and that these catchments yield high average denudation rates of 350 mm/ka. Glacially overprinted catchments yielded catchment-wide denudation rates an order of magnitude lower. These low denudation rates are hypothesized to be the consequence of both (i) a dominance of slow hillslope processes and (ii) admixture of high concentration, pre-LGM glacial sediment. This suggests that a) a careful field investigation must accompany the denudation rate studies and b) that the concept of area-weighted cosmogenic nuclide denudation rates must be considered in light of the predominant catchment processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chironomids preserved in a sediment core from Lago di Origlio (416 m a.s.l.), a lake in the foreland of the Southern Swiss Alps, allowed quantitative reconstruction of Late Glacial and Early Holocene summer temperatures using a combined Swiss–Norwegian temperature inference model based on chironomid assemblages from 274 lakes. We reconstruct July air temperatures of ca. 10 °C between 17 300 and 16 000 cal yr BP, a rather abrupt warming to ca. 12.0 °C at ca. 16 500–16 000 cal yr BP, and a strong temperature increase at the transition to the Bølling/Allerød interstadial with average temperatures of about 14 °C. During the Younger Dryas and earliest Holocene similar temperatures are reconstructed as for the interstadial. The rather abrupt warming at 16 500–16 000 cal yr BP is consistent with sea-surface temperature as well as speleothem records, which indicate a warming after the end of Heinrich event 1 (sensu stricto) and before the Bølling/Allerød interstadial in southern Europe and the Mediterranean Sea. Pollen records from Origlio and other sites in southern Switzerland and northern Italy indicate an early reforestation of the lowlands 2000–1500 yr prior to the large-scale afforestation of Central Europe at the onset of the Bølling/Allerød period at ca. 14 700–14 600 cal yr BP. Our results suggest that these early afforestation processes in the formerly glaciated areas of northern Italy and southern Switzerland have been promoted by increasing temperatures.