17 resultados para Force and energy.

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatal falls from great height are a frequently encountered setting in forensic pathology. They present--by virtue of a calculable energy transmission to the body--an ideal model for the assessment of the effects of blunt trauma to a human body. As multislice computed tomography (MSCT) has proven not only to be invaluable in clinical examinations, but also to be a viable tool in post-mortem imaging, especially in the field of osseous injuries, we performed a MSCT scan on 20 victims of falls from great height. We hereby detected fractures and their distributions were compared with the impact energy. Our study suggests a marked increase of extensive damage to different body regions at about 20 kJ and more. The thorax was most often affected, regardless of the amount of impacting energy and the primary impact site. Cranial fracture frequency displayed a biphasic distribution with regard to the impacting energy; they were more frequent in energies of less than 10, and more than 20 kJ, but rarer in the intermediate energy group, namely that of 10-20 kJ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate a new triaxial accelerometer device for prediction of energy expenditure, measured as VO2/kg, in obese adults and normal-weight controls during activities of daily life. Subjects and methods: Thirty-seven obese adults (Body Mass Index (BMI) 37±5.4) and seventeen controls (BMI 23±1.8) performed eight activities for 5 to 8 minutes while wearing a triaxial accelerometer on the right thigh. Simultaneously, VO2 and VCO2 were measured using a portable metabolic system. The relationship between accelerometer counts (AC) and VO2/kg was analysed using spline regression and linear mixed-effects models. Results: For all activities, VO2/kg was significantly lower in obese participants than in normalweight controls. A linear relationship between AC and VO2/kg existed only within accelerometer values from 0 to 300 counts/min, with an increase of 3.7 (95%-confidence interval (CI) 3.4 - 4.1) and 3.9 ml/min (95%-CI 3.4 - 4.3) per increase of 100 counts/min in obese and normal-weight adults, respectively. Linear modelling of the whole range yields wide prediction intervals for VO2/kg of ± 6.3 and ±7.3 ml/min in both groups. Conclusion: In obese and normal-weight adults, the use of AC for predicting energy expenditure, defined as VO2/kg, from a broad range of physical activities, characterized by varying intensities and types of muscle work, is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper presents a link layer stack for wireless sensor networks, which consists of the Burst-aware Energy-efficient Adaptive Medium access control (BEAM) and the Hop-to-Hop Reliability (H2HR) protocol. BEAM can operate with short beacons to announce data transmissions or include data within the beacons. Duty cycles can be adapted by a traffic prediction mechanism indicating pending packets destined for a node and by estimating its wake-up times. H2HR takes advantage of information provided by BEAM such as neighbour information and transmission information to perform per-hop congestion control. We justify the design decisions by measurements in a real-world wireless sensor network testbed and compare the performance with other link layer protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hot Jupiters, due to the proximity to their parent stars, are subjected to a strong irradiating flux that governs their radiative and dynamical properties. We compute a suite of three-dimensional circulation models with dual-band radiative transfer, exploring a relevant range of irradiation temperatures, both with and without temperature inversions. We find that, for irradiation temperatures T irr lsim 2000 K, heat redistribution is very efficient, producing comparable dayside and nightside fluxes. For T irr ≈ 2200-2400 K, the redistribution starts to break down, resulting in a high day-night flux contrast. Our simulations indicate that the efficiency of redistribution is primarily governed by the ratio of advective to radiative timescales. Models with temperature inversions display a higher day-night contrast due to the deposition of starlight at higher altitudes, but we find this opacity-driven effect to be secondary compared to the effects of irradiation. The hotspot offset from the substellar point is large when insolation is weak and redistribution is efficient, and decreases as redistribution breaks down. The atmospheric flow can be potentially subjected to the Kelvin-Helmholtz instability (as indicated by the Richardson number) only in the uppermost layers, with a depth that penetrates down to pressures of a few millibars at most. Shocks penetrate deeper, down to several bars in the hottest model. Ohmic dissipation generally occurs down to deeper levels than shock dissipation (to tens of bars), but the penetration depth varies with the atmospheric opacity. The total dissipated Ohmic power increases steeply with the strength of the irradiating flux and the dissipation depth recedes into the atmosphere, favoring radius inflation in the most irradiated objects. A survey of the existing data, as well as the inferences made from them, reveals that our results are broadly consistent with the observational trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing usage of wireless networks creates new challenges for wireless access providers. On the one hand, providers want to satisfy the user demands but on the other hand, they try to reduce the operational costs by decreasing the energy consumption. In this paper, we evaluate the trade-off between energy efficiency and quality of experience for a wireless mesh testbed. The results show that by intelligent service control, resources can be better utilized and energy can be saved by reducing the number of active network components. However, care has to be taken because the channel bandwidth varies in wireless networks. In the second part of the paper, we analyze the trade-off between energy efficiency and quality of experience at the end user. The results reveal that a provider's service control measures do not only reduce the operational costs of the network but also bring a second benefit: they help maximize the battery lifetime of the end-user device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.