17 resultados para Foraging strata
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Conceived to combat widescale biodiversity erosion in farmland, agri-environment schemes have largely failed to deliver their promises despite massive financial support. While several common species have shown to react positively to existing measures, rare species have continued to decline in most European countries. Of particular concern is the status of insectivorous farmland birds that forage on the ground. We modelled the foraging habitat preferences of four declining insectivorous bird species (hoopoe, wryneck, woodlark, common redstart) inhabiting fruit tree plantations, orchards and vineyards. All species preferred foraging in habitat mosaics consisting of patches of grass and bare ground, with an optimal, species-specific bare ground coverage of 30–70% at the foraging patch scale. In the study areas, birds thrived in intensively cultivated farmland where such ground vegetation mosaics existed. Not promoted by conventional agri-environment schemes until now, patches of bare ground should be implemented throughout grassland in order to prevent further decline of insectivorous farmland birds.
Resumo:
BACKGROUND: Patients coinfected with hepatitis C virus (HCV) and HIV experience higher mortality rates than patients infected with HIV alone. We designed a study to determine whether risks for later mortality are similar for HCV-positive and HCV-negative individuals when subjects are stratified on the basis of baseline CD4+ T-cell counts. METHODS: Antiretroviral-naive individuals, who initiated highly active antiretroviral therapy (HAART) between 1996 and 2002 were included in the study. HCV-positive and HCV-negative individuals were stratified separately by baseline CD4+ T-cell counts of 50 cell/microl increments. Cox-proportional hazards regression was used to model the effect of these strata with other variables on survival. RESULTS: CD4+ T-cell strata below 200 cells/microl, but not above, imparted an increased relative hazard (RH) of mortality for both HCV-positive and HCV-negative individuals. Among HCV-positive individuals, after adjustment for baseline age, HIV RNA levels, history of injection drug use and adherence to therapy, only CD4+ T-cell strata of <50 cells/microl (RH=4.60; 95% confidence interval [CI] 2.72-7.76) and 50-199 cells/microl (RH=2.49; 95% CI 1.63-3.81) were significantly associated with increased mortality when compared with those initiating therapy at cell counts >500 cells/microl. The same baseline CD4+ T-cell strata were found for HCV-negative individuals. CONCLUSION: In a within-groups analysis, the baseline CD4+ T-cell strata that are associated with increased RHs for mortality are the same for HCV-positive and HCV-negative individuals initiating HAART. However, a between-groups analysis reveals a higher absolute mortality risk for HCV-positive individuals.
Resumo:
Background Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. Methodology/Principal Findings In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Conclusions/Significance Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.
Resumo:
Clonality is frequently positively correlated with plant invasiveness, but which aspects of clonality make some clonal species more invasive than others is not known. Due to their spreading growth form, clonal plants are likely to experience spatial heterogeneity in nutrient availability. Plasticity in allocation of biomass to clonal growth organs and roots may allow these plants to forage for high-nutrient patches. We investigated whether this foraging response is stronger in species that have become invasive than in species that have not. We used six confamilial pairs of native European clonal plant species differing in invasion success in the USA. We grew all species in large pots under homogeneous or heterogeneous nutrient conditions in a greenhouse, and compared their nutrient-foraging response and performance. Neither invasive nor non-invasive species showed significant foraging responses to heterogeneity in clonal growth organ biomass or in aboveground biomass of clonal offspring. Invasive species had, however, a greater positive foraging response in terms of root and belowground biomass than non-invasive species. Invasive species also produced more total biomass. Our results suggest that the ability for strong root foraging is among the characteristics promoting invasiveness in clonal plants.
Resumo:
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems.