3 resultados para Foodborne spoilage
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Campylobacter spp., Salmonella enterica, and Yersinia enterocolitica are common causes of foodborne infections in humans with pork as a potential source. Monitoring programs at farm level are, to date, only implemented for S. enterica, while epidemiological knowledge of the other two pathogens is still lacking. This study aimed to assess the pathogen load (in the pigs' environment) in fattening pig herds, their simultaneous occurrence, and the occurrence of Campylobacter spp. and Y. enterocolitica in herds in different Salmonella risk categories. In 50 fattening pig herds in northern Germany, four pooled fecal samples and 10 swab samples from the pigs' direct environment (pen walls, nipple drinkers), indirect environment (hallways, drive boards), and flies and rodent droppings were collected from each herd and submitted for cultural examination. Campylobacter spp. were detected in 38.1% of fecal, 32.7% of direct environment, 5.3% of indirect environment, and 4.6% of flies/pests samples collected, and Y. enterocolitica in 17.1, 8.1, 1.2, and 3.1% and S. enterica in 11.2, 7.7, 4.1, and 1.5%, respectively. For Campylobacter spp., Y. enterocolitica, and S. enterica, 80, 48, and 32% of herds were positive, respectively; 22 herds were positive for both Campylobacter spp. and Y. enterocolitica, 12 for Campylobacter spp. and S. enterica, and 7 for Y. enterocolitica and S. enterica. There was no significant association between the pathogens at herd level. Campylobacter spp. and Y. enterocolitica were found more often in samples from the low Salmonella risk category (odds ratio, 0.51; confidence interval, 0.36 to 0.73, and 0.3, 0.17 to 0.57), and this was also the case for Y. enterocolitica at herd level (odds ratio, 0.08; confidence interval, 0.02 to 0.3). This study provides evidence that the pigs' environment should be accounted for when implementing control measures on farms against Campylobacter spp. and Y. enterocolitica. An extrapolation from the current Salmonella monitoring to the other two pathogens does not seem feasible.
Resumo:
Trichinellosis is one of the most important foodborne parasitic zoonoses, caused by nematodes of the genus Trichinella. Pigs and other domestic and wild animals, including red foxes (Vulpes vulpes), are sources of Trichinella infection for human beings. Trichinella britovi is the major agent of infection in sylvatic animals and the most important species circulating in the European wildlife. The present study aimed at assessing Trichinella spp. infection in red foxes from the North of Portugal. Forty-seven carcasses of wild red foxes shot during the official hunting season or killed in road accidents were obtained between November 2008 and March 2010. In order to identify the presence of Trichinella spp. larvae in red foxes, an individual artificial digestion was performed using approximately 30g of muscle samples. Larvae of Trichinella spp. were detected in one (2.1%) out of the 47 assessed foxes. After a multiplex polymerase chain reaction analysis, T. britovi was molecularly identified as the infecting species. The recognition of T. britovi in a red fox confirms that a sylvatic cycle is present in the North of Portugal and that the local prevalence of Trichinella infection in wildlife must not be ignored due to its underlying zoonotic risks.
Resumo:
Chlamydia and Chlamydia-related bacteria are known to infect various organisms and may cause a wide range of diseases, especially in ruminants. To gain insight into the prevalence of these bacteria in the ruminant environment, we applied a pan-Chlamydiales PCR followed by sequencing to 72 ruminant environmental samples from water, feed bunks and floors. Chlamydiales from four family-level lineages were detected indicating a high biodiversity of Chlamydiales in ruminant farms. Parachlamydiaceae were detected in all three types of environmental samples and was the most abundant family-level taxon (60%). In contrast, only one bacterium from each of the following family-level lineages was identified: Chlamydiaceae, Criblamydiaceae and Simkaniaceae. The observed high prevalence of Parachlamydiaceae in water samples may suggest water as the main source of contamination for ruminants as well as their environment due to spoilage. The absence of reported infections in the investigated ruminant farms might indicate that either detected Chlamydiales are of reduced pathogenicity or infective doses have not been reached.