8 resultados para Fly ash
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The microporous material Ionsiv is used for 137Cs removal from aqueous nuclear waste streams. In the UK, Cs-loaded Ionsiv is classed as an intermediate-level waste; no sentencing and disposal route is yet defined for this material and it is currently held in safe interim storage on several nuclear sites. In this study, the suitability of fly ash and blast furnace slag blended cements for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction (<= 1.6 wt.%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Furthermore, it was evident that K and Na present in the cementitious pore water exchanged with Cs and H in the Ionsiv. Therefore, cement systems lower in K and Na, such as slag based cements, showed lower Cs release than the fly ash based cements.
Resumo:
An accurate and efficient determination of the highly toxic Cr(VI) in solid materials is important to determine the total Cr(VI) inventory of contaminated sites and the Cr(VI) release potential from such sites into the environment. Most commonly, total Cr(VI) is extracted from solid materials following a hot alkaline extraction procedure (US EPA method 3060A) where a complete release of water-extractable and sparingly soluble Cr(VI) phase is achieved. This work presents an evaluation of matrix effects that may occur during the hot alkaline extraction and in the determination of the total Cr(VI) inventory of variably composed contaminated soils and industrial materials (cement, fly ash) and is compared to water-extractable Cr(VI) results. Method validation including multiple extractions and matrix spiking along with chemical and mineralogical characterization showed satisfying results for total Cr(VI) contents for most of the tested materials. However, unreliable results were obtained by applying method 3060A to anoxic soils due to the degradation of organic material and/or reactions with Fe2+-bearing mineral phases. In addition, in certain samples discrepant spike recoveries have to be also attributed to sample heterogeneity. Separation of possible extracted Cr(III) by applying cation-exchange cartridges prior to solution analysis further shows that under the hot alkaline extraction conditions only Cr(VI) is present in solution in measurable amounts, whereas Cr(III) gets precipitated as amorphous Cr(OH)3(am). It is concluded that prior to routine application of method 3060A to a new material type, spiking tests are recommended for the identification of matrix effects. In addition, the mass of extracted solid material should to be well adjusted to the heterogeneity of the Cr(VI) distribution in the material in question.
Resumo:
The suitability of Portland cement blends for encapsulation of Cs-Ionsiv in a monolithic wasteform was investigated. No evidence of reaction or dissolution of the Cs-Ionsiv in the cementitious environment was found by scanning electron microscopy and X-ray diffraction. However, a small fraction (≤1.6 wt%) of the Cs inventory was released from the encapsulated Ionsiv during leaching experiments carried out on hydrated samples. Cs release was enhanced by exchange of K and Na present in the cementitious pore water. Cement systems lower in K and Na, such as slag based blends, showed lower Cs release than the fly ash based analogues. © 2010 Materials Research Society.
Resumo:
Recent experiments revealed that the fruit fly Drosophila melanogaster has a dedicated mechanism for forgetting: blocking the G-protein Rac leads to slower and activating Rac to faster forgetting. This active form of forgetting lacks a satisfactory functional explanation. We investigated optimal decision making for an agent adapting to a stochastic environment where a stimulus may switch between being indicative of reward or punishment. Like Drosophila, an optimal agent shows forgetting with a rate that is linked to the time scale of changes in the environment. Moreover, to reduce the odds of missing future reward, an optimal agent may trade the risk of immediate pain for information gain and thus forget faster after aversive conditioning. A simple neuronal network reproduces these features. Our theory shows that forgetting in Drosophila appears as an optimal adaptive behavior in a changing environment. This is in line with the view that forgetting is adaptive rather than a consequence of limitations of the memory system.
Resumo:
The protozoan pathogen Trypanosoma brucei is transmitted between mammals by tsetse flies. The first compartment colonised by trypanosomes after a blood meal is the fly midgut lumen. Trypanosomes present in the lumen-designated as early procyclic forms-express the stage-specific surface glycoproteins EP and GPEET procyclin. When the trypanosomes establish a mature infection and colonise the ectoperitrophic space, GPEET is down-regulated, and EP becomes the major surface protein of late procyclic forms. A few years ago, it was discovered that procyclic form trypanosomes exhibit social motility (SoMo) when inoculated on a semi-solid surface. We demonstrate that SoMo is a feature of early procyclic forms, and that late procyclic forms are invariably SoMo-negative. In addition, we show that, apart from GPEET, other markers are differentially expressed in these two life-cycle stages, both in culture and in tsetse flies, indicating that they have different biological properties and should be considered distinct stages of the life cycle. Differentially expressed genes include two closely related adenylate cyclases, both hexokinases and calflagins. These findings link the phenomenon of SoMo in vitro to the parasite forms found during the first 4-7 days of a midgut infection. We postulate that ordered group movement on plates reflects the migration of parasites from the midgut lumen into the ectoperitrophic space within the tsetse fly. Moreover, the process can be uncoupled from colonisation of the salivary glands. Although they are the major surface proteins of procyclic forms, EP and GPEET are not essential for SoMo, nor, as shown previously, are they required for near normal colonisation of the fly midgut.
Resumo:
The interaction of comets with the solar wind has been the focus of many studies including numerical modeling. We compare the results of our multifluid MHD simulation of comet 1P/Halley to data obtained during the flyby of the European Space Agency's Giotto spacecraft in 1986. The model solves the full set of MHD equations for the individual fluids representing the solar wind protons, the cometary light and heavy ions, and the electrons. The mass loading, charge-exchange, dissociative ion-electron recombination, and collisional interactions between the fluids are taken into account. The computational domain spans over several million kilometers, and the close vicinity of the comet is resolved to the details of the magnetic cavity. The model is validated by comparison to the corresponding Giotto observations obtained by the Ion Mass Spectrometer, the Neutral Mass Spectrometer, the Giotto magnetometer experiment, and the Johnstone Plasma Analyzer instrument. The model shows the formation of the bow shock, the ion pile-up, and the diamagnetic cavity and is able to reproduce the observed temperature differences between the pick-up ion populations and the solar wind protons. We give an overview of the global interaction of the comet with the solar wind and then show the effects of the Lorentz force interaction between the different plasma populations.