26 resultados para Flux optique
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Cystic fibrosis (CF), a common lethal inherited disorder defined by ion transport abnormalities, chronic infection, and robust inflammation, is the result of mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a cAMP-activated chloride (Cl-) channel. Macrophages are reported to have impaired activity in CF. Previous studies suggest that Cl- transport is important for macrophage function; therefore, impaired Cl- secretion may underlie CF macrophage dysfunction. To determine whether alterations in Cl- transport exist in CF macrophages, Cl- efflux was measured using N-[ethoxycarbonylmethyl]- 6-methoxy-quinolinium bromide (MQAE), a fluorescent indicator dye. The contribution of CFTR was assessed by calculating Cl- flux in the presence and absence of cftr(inh)-172. The contribution of calcium (Ca(2+))-modulated Cl- pathways was assessed by examining Cl- flux with varied extracellular Ca(2+) concentrations or after treatment with carbachol or thapsigargin, agents that increase intracellular Ca(2+) levels. Our data demonstrate that CFTR contributed to Cl- efflux only in WT macrophages, while Ca(2+)-mediated pathways contributed to Cl- transport in CF and WT macrophages. Furthermore, CF macrophages demonstrated augmented Cl- efflux with increases in extracellular Ca(2+). Taken together, this suggests that Ca(2+)-mediated Cl- pathways are enhanced in CF macrophages compared with WT macrophages.
Resumo:
The concept of elementary vector is generalised to the case where the steady-state space of the metabolic network is not a flux cone but is a general polyhedron due to further inhomogeneous constraints on the flows through some of the reactions. On one hand, this allows to selectively enumerate elementary modes which satisfy certain optimality criteria and this can yield a large computational gain compared with full enumeration. On the other hand, in contrast to the single optimum found by executing a linear program, this enables a comprehensive description of the set of alternate optima often encountered in flux balance analysis. The concepts are illustrated on a metabolic network model of human cardiac mitochondria.
Resumo:
BACKGROUND: Sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of glycan-binding inhibitory receptors, and among them, Siglec-8 is selectively expressed on human eosinophils, basophils, and mast cells. On eosinophils, Siglec-8 engagement induces apoptosis, but its function on mast cells is unknown. OBJECTIVE: We sought to study the effect of Siglec-8 engagement on human mast cell survival and mediator release responses. METHODS: Human mast cells were generated from CD34+ precursors. Apoptosis was studied by using flow cytometry. Mast cell mediator release or human lung airway smooth muscle contraction was initiated by FcepsilonRI cross-linking with or without preincubation with Siglec-8 or control antibodies, and release of mediators was analyzed along with Ca++ flux. RBL-2H3 cells transfected with normal and mutated forms of Siglec-8 were used to study how Siglec-8 engagement alters mediator release. RESULTS: Siglec-8 engagement failed to induce human mast cell apoptosis. However, preincubation with Siglec-8 mAbs significantly (P < .05) inhibited FcepsilonRI-dependent histamine and prostaglandin D(2) release, Ca++ flux, and anti-IgE-evoked contractions of human bronchial rings. In contrast, release of IL-8 was not inhibited. Siglec-8 ligation was also shown to inhibit beta-hexosaminidase release and Ca++ flux triggered through FcepsilonRI in RBL-2H3 cells transfected with full-length human Siglec-8 but not in cells transfected with Siglec-8 containing a tyrosine to phenylalanine point mutation in the membrane-proximal immunoreceptor tyrosine-based inhibitory motif domain. CONCLUSION: These data represent the first reported inhibitory effects of Siglec engagement on human mast cells.