111 resultados para Fluvial-aeolian sediments
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples. Keywords
Resumo:
Palaeoflood hydrology is an expanding field as the damage potential of flood and flood-related processes are increasing with the population density and the value of the infrastructure. Assessing the risk of these hazards in mountainous terrain requires knowledge about the frequency and severness of such events in the past. A wide range of methods is employed using diverse biologic, geomorphic or geologic evidences to track past flood events. Impact of floods are studied and dated on alluvial fans and cones using for example the growth disturbance of trees (Stoffel and Bollschweiler 2008; Schneuwly-Bollschweiler and Stoffel 2012: this volume) or stratigraphic layers deposited by debris flows, allowing to reconstruct past flood frequencies (Bardou et~al. 2003). Further downstream, the classical approach of palaeoflood hydrology (Kochel and Baker 1982) utilizes geomorphic indicators such as overbank sediments, silt lines and erosion features of floods along a river (e.g. Benito and Thorndycraft 2005). Fine-grained sediment settles out of the river suspension in eddies or backwater areas, where the flow velocity of the river is reduced. Records of these deposits at different elevations across a river’s profile can be used to assess the discharge of the past floods. This approach of palaeoflood hydrology studies was successfully applied in several river catchments (e.g. Ely et al. 1993; Macklin and Lewin 2003; O’Connor et al. 1994; Sheffer et al. 2003; Thorndycraft et al. 2005; Thorndycraft and Benito 2006). All these different reconstruction methods have their own advantages and disadvantages, but often these studies have a limited time coverage and the records are potentially incomplete due to lateral limits of depositional areas and due to the erosional power of fluvial processes that remove previously deposited flood witnesses. Here, we present a method that follows the sediment particle transported by a flood event to its final sink: the lacustrine basin.