27 resultados para Flower shows
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The deceptive Iris lutescens (Iridaceae) shows a heritable and striking flower colour polymorphism, with both yellow- and purple-flowered individuals growing sympatrically. Deceptive species with flower colour polymorphism are mainly described in the family Orchidaceae and rarely found in other families. To explain the maintenance of flower colour polymorphism in I.lutescens, we investigated female reproductive success in natural populations of southern France, at both population and local scales (within populations). Female reproductive success was positively correlated with yellow morph frequency, at both the population scale and the local scale. Therefore, we failed to observe negative frequency-dependent selection (NFDS), a mechanism commonly invoked to explain flower colour polymorphism in deceptive plant species. Flower size and local flower density could also affect female reproductive success in natural populations. Pollinator behaviour could explain the positive effect of the yellow morph, and our results suggest that flower colour polymorphism might not persist in I.lutescens, but alternative explanations not linked to pollinator behaviour are discussed. In particular, NFDS, although an appealingly simple explanation previously demonstrated in orchids, may not always contribute to maintaining flower colour polymorphism, even in deceptive species.
Resumo:
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.
Resumo:
Background The Arabidopsis FILAMENTOUS FLOWER (FIL) gene encodes a YABBY (YAB) family putative transcription factor that has been implicated in specifying abaxial cell identities and thus regulating organ polarity of lateral organs. In contrast to double mutants of fil and other YAB genes, fil single mutants display mainly floral and inflorescence morphological defects that do not reflect merely a loss of abaxial identity. Recently, FIL and other YABs have been shown to regulate meristem organization in a non-cell-autonomous manner. In a screen for new mutations affecting floral organ morphology and development, we have identified a novel allele of FIL, fil-9 and characterized its floral and meristem phenotypes. Results The fil-9 mutation results in highly variable disruptions in floral organ numbers and size, partial homeotic transformations, and in defective inflorescence organization. Examination of meristems indicates that both fil-9 inflorescence and floral meristems are enlarged as a result of an increase in cell number, and deformed. Furthermore, primordia emergence from these meristems is disrupted such that several primordia arise simultaneously instead of sequentially. Many of the organs produced by the inflorescence meristems are filamentous, yet they are not considered by the plant as flowers. The severity of both floral organs and meristem phenotypes is increased acropetally and in higher growth temperature. Conclusions Detailed analysis following the development of fil-9 inflorescence and flowers throughout flower development enabled the drawing of a causal link between multiple traits of fil-9 phenotypes. The study reinforces the suggested role of FIL in meristem organization. The loss of spatial and temporal organization of fil-9 inflorescence and floral meristems presumably leads to disrupted cell allocation to developing floral organs and to a blurring of organ whorl boundaries. This disruption is reflected in morphological and organ identity aberrations of fil-9 floral organs and in the production of filamentous organs that are not perceived as flowers. Here, we show the role of FIL in reproductive meristem development and emphasize the potential of using fil mutants to study mersitem organization and the related effects on flower morphogenesis.
Resumo:
The first step of coagulation factor XIII (FXIII) activation involves cleavage of the FXIII activation peptide (FXIII-AP) by thrombin. However, it is not known whether the FXIII-AP is released into plasma upon cleavage or remains attached to activated FXIII. The aim of the present work was to study the structure of free FXIII-AP, develop an assay for FXIII-AP determination in human plasma, and to answer the question whether FXIII-AP is released into plasma. We used ab-initio modeling and molecular dynamics simulations to study the structure of free FXIII-AP. We raised monoclonal and polyclonal antibodies against FXIII-AP and developed a highly sensitive and specific ELISA method for direct detection of FXIII-AP in human plasma. Structural analysis showed a putative different conformation of the free FXIII-AP compared to FXIII-AP bound to the FXIII protein. We concluded that it might be feasible to develop specific antibodies against the free FXIII-AP. Using our new FXIII-AP ELISA, we found high levels of FXIII-AP in in-vitro activated plasma samples and serum. We showed for the first time that FXIIIAP is detached from activated FXIII and is released into plasma, where it can be directly measured. Our findings may be of major clinical interest in regard to a possible new marker in thrombotic disease.