27 resultados para Flow through porous media
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Geological and pedological processes rarely form isotropic media as is usually assumed in transport studies. Anisotropy at the Darcy or field scale may be detected directly by measuring flow parameters or may become indirectly evident from movement and shape of solute plumes. Anisotropic behavior of a soil at one scale may, in many cases, be related to the presence of lower-scale directional structures. Miller similitude with different pore-scale geometries of the basic element is used to model macroscopic flow and transport behavior. Analytical expressions for the anisotropic conductivity tensor are derived based on the dynamic law that governs the flow problem at the pore scale. The effects of anisotropy on transport parameters are estimated by numerical modeling.
Resumo:
The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.
Resumo:
The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10(-20) to 10(-21) m(2) and a moderate anisotropy ratio < 10. Porosity depends on clay content and burial depth; values of similar to 0.12 are reported for the region of interest. Porosimetry indicates that about 10-30 of voids can be classed as macropores, corresponding to an equivalent pore radius > 25 nm. The determined entry pressures are in the range of 0.4-10 MPa and exhibit a marked dependence on intrinsic permeability. Both in situ gas tests and gas permeameter tests on drillcores demonstrate that gas transport through the rock is accompanied by porewater displacement, suggesting that classical flow concepts of immiscible displacement in porous media can be applied when the gas entry pressure (i.e. capillary threshold pressure) is less than the minimum principal stress acting within the rock. Essentially, the pore space accessible to gas flow is restricted to the network of connected macropores, which implies a very low degree of desaturation of the rock during the gas imbibition process. At elevated gas pressures (i.e. when gas pressure approaches the level of total stress that acts on the rock body), evidence was seen for dilatancy controlled gas transport mechanisms. Further field experiments were aimed at creating extended tensile fractures with high fracture transmissivity (hydro- or gasfracs). The test results lead to the conclusion that gas fracturing can be largely ruled out as a risk for post-closure repository performance.
Resumo:
OBJECTIVE: To investigate whether intermittent pneumatic compression (IPC) augments skin blood flow through transient suspension of local vasoregulation, the veno-arteriolar response (VAR), in healthy controls and in patients with peripheral arterial disease (PAD). METHODS: Nineteen healthy limbs and twenty-two limbs with PAD were examined. To assess VAR, skin blood flow (SBF) was measured using laser Doppler fluxmetry in the horizontal and sitting positions and was defined as percentage change with postural alteration [(horizontal SBF--sitting SBF)/horizontal SBF x 100]. On IPC application to the foot, the calf, or both, SBF was measured with laser Doppler fluxmetry, the probe being attached to the pulp of the big toe. RESULTS: Baseline VAR was higher in the controls 63.8 +/- 6.4% than in patients with PAD (31.7 +/- 13.4%, P = .0162). In both groups SBF was significantly higher with IPC than at rest (P < .0001). A higher percentage increase with IPC was demonstrated in the controls (242 +/- 85% to 788 +/- 318%) than in subjects with PAD, for each one of the three different IPC modes investigated (98 +/- 33% to 275 +/- 72%) with IPC was demonstrated. The SBF enhancement with IPC correlated with VAR for all three compression modes (r = 0.58, P = .002 for calf compression, r = 0.65, P < .0001 for foot compression alone, and r = 0.64, P = .0002 for combined foot and calf compression). CONCLUSION: The integrity of the veno-arteriolar response correlates with the level of skin blood flow augmentation generated with intermittent pneumatic compression, indicating that this may be associated with a transient suspension of the autoregulatory vasoconstriction both in healthy controls and in patients with PAD.
Resumo:
Coulometric nanotitrations were realized in a microchannel system using a continuous-flow titration technique with a triangle current-time profile. Redox and acid-base titrations were carried out on Fe(II) and nitric acid samples, respectively, with the same nanotitrator device. A linear relation between the concentration and the coulometric current transferred to the solution was found. The advantages of this universally applicable nanotitrator are fast response, low sample volume, high sensitivity, and high reproducibility as well as the convenience of handling an automated analyzer of the flow-through type.
Resumo:
Outside lobbying is a key strategy for social movements, interest groups and political parties for mobilising public opinion through the media in order to pressure policymakers and influence the policymaking process. Relying on semi-structured interviews and newspaper content analysis in six Western European countries, this article examines the use of four outside lobbying strategies – media-related activities, informing (about) the public, mobilisation and protest – and the amount of media coverage they attract. While some strategies are systematically less pursued than others, we find variation in their relative share across institutional contexts and actor types. Given that most of these differences are not accurately mirrored in the media, we conclude that media coverage is only loosely connected to outside lobbying behaviour, and that the media respond differently to a given strategy when used by different actors. Thus, the ability of different outside lobbying strategies to generate media coverage critically depends on who makes use of them.
Resumo:
Ecological speciation is defined as the emergence of reproductive isolation as a direct or indirect consequence of divergent ecological adaptation. Several empirical examples of ecological speciation have been reported in the literature which very often involve adaptation to biotic resources. In this review, we investigate whether adaptation to different thermal habitats could also promote speciation and try to assess the importance of such processes in nature. Our survey of the literature identified 16 animal and plant systems where divergent thermal adaptation may underlie (partial) reproductive isolation between populations or may allow the stable coexistence of sibling taxa. In many of the systems, the differentially adapted populations have a parapatric distribution along an environmental gradient. Isolation often involves extrinsic selection against locally maladapted parental or hybrid genotypes, and additional pre- or postzygotic barriers may be important. Together, the identified examples strongly suggest that divergent selection between thermal environments is often strong enough to maintain a bimodal genotype distribution upon secondary contact. What is less clear from the available data is whether it can also be strong enough to allow ecological speciation in the face of gene flow through reinforcement-like processes. It is possible that intrinsic features of thermal gradients or the genetic basis of thermal adaptation make such reinforcement-like processes unlikely but it is equally possible that pertinent systems are understudied. Overall, our literature survey highlights (once again) the dearth of studies that investigate similar incipient species along the continuum from initial divergence to full reproductive isolation and studies that investigate all possible reproductive barriers in a given system.
Resumo:
Remarkable advances in ultrasound imaging technology have made it possible to diagnose fetal cardiovascular lesions as early as 12-14 weeks of gestation and to assess their physiological relevance by echocardiography. Moreover, invasive techniques have been developed and refined to relieve significant congenital heart disease (CHD), such as critical aortic and pulmonary stenoses in the pediatric population including neonates. Recognition of the fact that certain CHDs can evolve in utero, and early intervention may improve the outcome by altering the natural history of such conditions has led to the evolution of a new fetal therapy, i.e. fetal cardiac intervention. Two entities, pulmonary valvar atresia and intact ventricular septum (PA/IVS) and hypoplastic left heart syndrome (HLHS), are associated with significant morbidity and mortality even with postnatal surgical therapy. These cases are believed to occur due to restricted blood flow, leading to impaired growth and function of the right or left ventricle. Therefore, several centers started the approach of antenatal intervention with the primary goal of improving the blood flow through the stenotic/atretic valve orifices to allow growth of cardiac structures. Even though centers with a reasonable number of cases seem to have improved the technique and the immediate outcome of fetal interventions, the field is challenged by ethical issues as the intervention puts both the mother and the fetus at risk. Moreover, the perceived benefits of prenatal treatment have to be weighed against steadily improving postnatal surgical and hybrid procedures, which have been shown to reduce morbidity and mortality for these complex heart defects. This review is an attempt to provide a balanced opinion and an update on fetal cardiac intervention.
Resumo:
The chronology and configuration of the Svalbard Barents Sea Ice Sheet (SBSIS) during the Late Weichselian (LW) are based on few and geographically scattered data. Thus, the timing and configuration of the SBSIS has been a subject of extensive debate. We present provenance data of erratic boulders and cosmogenic 10Be ages of bedrock and boulders from Northwest Spitsbergen (NWS), Svalbard to determine the thickness, configuration and chronology during the LW. We sampled bedrock and boulders of mountain summits and summit slopes, along with erratic boulders from coastal locations around NWS. We suggest that a local ice dome over central NWS during LW drained radially in all directions. Provenance data from erratic boulders from northern coastal lowland Reinsdyrflya suggest northeastward ice flow through Liefdefjorden. 10Be ages of high-elevation erratic boulders in central NWS (687–836 m above sea level) ranging from 18.3 ± 1.3 ka to 21.7 ± 1.4 ka, indicate that the centre of a local ice dome was at least 300 m thicker than at present. 10Be ages of all high-elevation erratics (>400 m above sea level, central and coastal locations) indicate the onset of ice dome thinning at 25–20 ka. 10Be ages from erratic boulders on Reinsdyrflya ranging from 11.1 ± 0.8 ka to 21.4 ± 1.7 ka, indicate an ice cover over the entire Reinsdyrflya during LW and a complete deglaciation prior to the Holocene, but apparently later than the thinning in the mountains. Lack of moraine deposits, but the preservation of beach terraces, suggest that the ice covering this peninsula possibly was cold-based and that Reinsdyrflya was part of an inter ice-stream area covered by slow-flowing ice, as opposed to the adjacent fjord, which possibly was filled by a fast-flowing ice stream. Despite the early thinning of the ice sheet (25–20 ka) we find a later timing of deglaciation of the fjords and the distal lowlands. Several bedrock samples (10Be) from vertical transects in the central mountains of NWS pre-date the LW, and suggest either ice free or pervasive cold-based ice conditions. Our reconstruction is aligned with the previously suggested hypothesis that a complex multi-dome ice-sheet-configuration occupied Svalbard and the Barents Sea during LW, with numerous drainage basins feeding fast ice streams, separated by slow flowing, possibly cold-based, inter ice-stream areas.