29 resultados para Flow rate variation

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate whether it is feasible to measure the segmental flux of small bowel content using MR phase-contrast (PC) pulse sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high prevalence of gastroesophageal reflux (GERD) has been observed in individuals with cerebral palsy (CP). One of the main risks for dental erosion is GERD. This study aimed to evaluate the presence of GERD, variables related to dental erosion and associated with GERD (diet consumption, gastrointestinal symptoms, bruxism), and salivary flow rate, in a group of 46 non-institutionalized CP individuals aged from 3 to 13 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STUDY DESIGN: This is an experimental study on an artificial vertebra model and human cadaveric spine. OBJECTIVE: Characterization of polymethylmethacrylate (PMMA) bone cement distribution in the vertebral body as a function of cement viscosity, bone porosity, and injection speed. Identification of relevant parameters for improved cement flow predictability and leak prevention in vertebroplasty. SUMMARY OF BACKGROUND DATA: Vertebroplasty is an efficient procedure to treat vertebral fractures and stabilize osteoporotic bone in the spine. Severe complications result from bone cement leakage into the spinal canal or the vascular system. Cement viscosity has been identified as an important parameter for leak prevention but the influence of bone structure and injection speed remain obscure. METHODS: An artificial vertebra model based on open porous aluminum foam was used to simulate bone of known porosity. Fifty-six vertebroplasties with 4 different starting viscosity levels and 2 different injection speeds were performed on artificial vertebrae of 3 different porosities. A validation on a human cadaveric spine was executed. The experiments were radiographically monitored and the shape of the cement clouds quantitatively described with the 2 indicators circularity and mean cement spreading distance. RESULTS: An increase in circularity and a decrease in mean cement spreading distance was observed with increasing viscosity, with the most striking change occurring between 50 and 100 Pas. Larger pores resulted in significantly reduced circularity and increased mean cement spreading distance whereas the effect of injection speed on the 2 indicators was not significant. CONCLUSION: Viscosity is the key factor for reducing the risk of PMMA cement leakage and it should be adapted to the degree of osteoporosis encountered in each patient. It may be advisable to opt for a higher starting viscosity but to inject the material at a faster rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipid resonances from mobile lipids can be observed by (1)H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. (1)H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To test a system with milk flow-controlled pulsation, milk flow was recorded in 29 Holstein cows during machine milking. The three different treatments were routine milking (including a pre-stimulation of 50-70 s), milking with a minimum of teat preparation and milking with milk flow-controlled b-phase, i.e. with a gradually elongated b-phase of the pulsation cycle with increasing milk flow rate and shortening again during decreasing milk flow. For data evaluation the herd was divided into three groups based on the peak flow rate at routine milking (group 1: <3.2 kg/min; group 2: 3.2-4.5 kg/min; group 3: >4.5 kg/min). Compared with routine milking, milking with milk flow-controlled b-phase caused a significant elevation of the peak flow rate and the duration of incline lasted longer especially in cows with a peak flow rate of >3.2 kg/min in routine milking. In milking with a minimum of teat preparation the duration of incline lasted longer compared with the two other treatments. Bimodality of milk flow, i.e. delayed milk ejection at the start of milking, was most frequent at milking with a minimum of teat preparation. No significant differences between routine milking and milking with milk flow-controlled b-phase were detected for all other milking characteristics. In summary, milking with milk flow-controlled b-phase changes the course of milk removal, however mainly in cows with high peak flow rates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An implantable transducer for monitoring the flow of Cerebrospinal fluid (CSF) for the treatment of hydrocephalus has been developed which is based on measuring the heat dissipation of a local thermal source. The transducer uses passive telemetry at 13.56 MHz for power supply and read out of the measured flow rate. The in vitro performance of the transducer has been characterized using artificial Cerebrospinal Fluid (CSF) with increased protein concentration and artificial CSF with 10\% fresh blood. After fresh blood was added to the artificial CSF a reduction of flow rate has been observed in case that the sensitive surface of the flow sensor is close to the sedimented erythrocytes. An increase of flow rate has been observed in case that the sensitive surface is in contact with the remaining plasma/artificial CSF mix above the sediment which can be explained by an asymmetric flow profile caused by the sedimentation of erythrocythes having increased viscosity compared to artificial CSF. After removal of blood from artificial CSF, no drift could be observed in the transducer measurement which could be associated to a deposition of proteins at the sensitive surface walls of the packaged flow transducer. The flow sensor specification requirement of +-10\% for a flow range between 2 ml/h and 40 ml/h. could be confirmed at test conditions of 37 degrees C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Due to the existence of a velocity slip and temperature jump on the solid walls, the heat transfer in microchannels significantly differs from the one in the macroscale. In our research, we have focused on the pressure driven gas flows in a simple finite microchannel geometry, with an entrance and an outlet, for low Reynolds (Re<200) and low Knudsen (Kn<0.01) numbers. For such a regime, the slip induced phenomena are strongly connected with the viscous effects. As a result, heat transfer is also significantly altered. For the optimization of flow conditions, we have investigated various temperature gradient configurations, additionally changing Reynolds and Knudsen numbers. The entrance effects, slip flow, and temperature jump lead to complex relations between flow behavior and heat transfer. We have shown that slip effects are generally insignificant for flow behavior. However, two configuration setups (hot wall cold gas and cold wall hot gas) are affected by slip in distinguishably different ways. For the first one, which concerns turbomachinery, the mass flow rate can increase by about 1% in relation to the no-slip case, depending on the wall-gas temperature difference. Heat transfer is more significantly altered. The Nusselt number between slip and no-slip cases at the outlet of the microchannel is increased by about 10%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To study the effects of a milking system that partially compensates for milk flow-dependent vacuum loss compared with a standard (high-line) milking unit in a tie-stall barn, milk flow and vacuum patterns were recorded in 10 cows during machine milking with 2 milking systems in a crossover design for 7 d each. Before and after each treatment period postmilking teat condition was recorded by ultrasound cross-sectioning. Additionally, 2 methods to measure teat tissue condition were compared: longitudinal teat ultrasound cross-sectioning and teat tissue density measurements with the spring-loaded caliper (cutimeter method). The partial compensation of milk flow-dependent vacuum loss caused an elevation of the peak flow rate (4.74+/-0.08 vs. 4.29+/-0.07 kg/min) and a shorter duration of plateau (1.57+/-0.06 vs. 1.96+/-0.07 min) compared with the standard milking system. Total milk yield, duration of incline and decline of milk flow, average milk flow, time until peak flow rate, main milking time, and total milking time did not differ between treatments (overall means: 13.75+/-0.17 kg; 0.65+/-0.01 min; 2.88+/-0.09 min; 2.82+/-0.05 kg/min; 1.65+/-0.03 min; 5.23+/-0.09 min, and 5.30+/-0.10 min, respectively). The vacuum drop in the short milk tube during periods of high milk flow was less in the compensating vacuum than in the standard milking system (11+/-1.1 vs. 15+/-0.7 kPa). Teat measures as determined by ultrasound remained unchanged over the entire experimental period with both milking systems. Postmilking teat tissue measures including their recovery within 20 min after the end of milking show a correlation (0.85 and 0.71, respectively) between the methods used (ultrasound and cutimeter method). In conclusion, a more constant vacuum at the teat tip (within the short milk tube) during periods of high milk flow affected milk flow patterns, mainly increasing peak flow rate. However, the reduced vacuum loss did not increase the overall speed of milking. In addition, effects of higher vacuum stability on teat condition and udder health were not obvious.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potential and adaptive flexibility of population dynamic P-systems (PDP) to study population dynamics suggests that they may be suitable for modelling complex fluvial ecosystems, characterized by a composition of dynamic habitats with many variables that interact simultaneously. Using as a model a reservoir occupied by the zebra mussel Dreissena polymorpha, we designed a computational model based on P systems to study the population dynamics of larvae, in order to evaluate management actions to control or eradicate this invasive species. The population dynamics of this species was simulated under different scenarios ranging from the absence of water flow change to a weekly variation with different flow rates, to the actual hydrodynamic situation of an intermediate flow rate. Our results show that PDP models can be very useful tools to model complex, partially desynchronized, processes that work in parallel. This allows the study of complex hydroecological processes such as the one presented, where reproductive cycles, temperature and water dynamics are involved in the desynchronization of the population dynamics both, within areas and among them. The results obtained may be useful in the management of other reservoirs with similar hydrodynamic situations in which the presence of this invasive species has been documented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the effect of time derivatives of flow rate and rotational speed was investigated on the mathematical modeling of a rotary blood pump (RBP). The basic model estimates the pressure head of the pump as a dependent variable using measured flow and speed as predictive variables. Performance of the model was evaluated by adding time derivative terms for flow and speed. First, to create a realistic working condition, the Levitronix CentriMag RBP was implanted in a sheep. All parameters from the model were physically measured and digitally acquired over a wide range of conditions, including pulsatile speed. Second, a statistical analysis of the different variables (flow, speed, and their time derivatives) based on multiple regression analysis was performed to determine the significant variables for pressure head estimation. Finally, different mathematical models were used to show the effect of time derivative terms on the performance of the models. In order to evaluate how well the estimated pressure head using different models fits the measured pressure head, root mean square error and correlation coefficient were used. The results indicate that inclusion of time derivatives of flow and speed can improve model accuracy, but only minimally.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluation of a novel non-invasive tool for postoperative follow-up of patients postelective saphenous vein coronary artery bypass graft (CABG) was performed. Ten patients were included. Their bypass grafts supplied the right coronary artery (7), marginal branches (1), diagonal branches (2), and the circumflex artery (n=1). Each bypass was examined intraoperatively using Doppler flow measurement. Patients were examined with a 3-Tesla magnetic resonance imaging (MRI) scanner (MAGNETOM Verio, Siemens, Erlangen, Germany) within one week postsurgery using MR-angiography with an intravasal contrast agent and velocity encoded phase-contrast flow measurements. Intraoperative Doppler flow measurements revealed regular flow patterns in all vascular territories supplied. The median intraoperative flow rate was 50 ml/min with an inter-quartile range (IQR) of 42-70 ml/min. The clinical postoperative course was uneventful. MRI showed all grafts to be patent. The median postoperative flow rate was 50 ml/min (IQR: 32-65 ml/min). MRI flow rates agreed well with intraoperative Doppler flow measurements (mean difference: -2.8±20.1 ml/min). This initial study demonstrates that 3-Tesla MRI flow measurements correlated well with Doppler thus reconfirming the graft patency postCABG. Further refinement and broader application of this technique may facilitate follow-up postCABG potentially replacing empiric clinical judgment by reliable non-invasive imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to compare tooth surface pH after drinking orange juice or water in 39 patients with dental erosion and in 17 controls. The following investigations were carried out: measurement of pH values on selected tooth surfaces after ingestion of orange juice followed by ingestion of water (acid clearance), measurement of salivary flow rate and buffering capacity. Compared with the controls, patients with erosion showed significantly greater decreases in pH after drinking orange juice, and the pH stayed lower for a longer period of time (p < 0.05). Saliva parameters showed no significant differences between the two patient groups except for a lower buffering capacity at pH 5.5 in the erosion group.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To test the hypothesis whether microbiota in oral biofilm is linked with obesity in adolescents we designed this cross-sectional study. Obese adolescents (n = 29) with a mean age of 14.7 years and normal weight subjects (n = 58) matched by age and gender were examined with respect to visible plaque index (VPI%) and gingival inflammation (bleeding on probing (BOP%)). Stimulated saliva was collected. They answered a questionnaire concerning medical history, medication, oral hygiene habits, smoking habits, and sociodemographic background. Microbiological samples taken from the gingival crevice was analyzed by checkerboard DNA-DNA hybridization technique. The sum of bacterial cells in subgingival biofilm was significantly associated with obesity (P < 0.001). The link between sum of bacterial cells and obesity was not confounded by any of the studied variables (chronic disease, medication, VPI%, BOP%, flow rate of whole saliva, or meal frequency). Totally 23 bacterial species were present in approximately threefold higher amounts, on average, in obese subjects compared with normal weight controls. Of the Proteobacteria phylum, Campylobacter rectus and Neisseria mucosa were present in sixfold higher amounts among obese subjects. The association between obesity and sum of bacterial cells in oral subgingival biofilm indicates a possible link between oral microbiota and obesity in adolescents.