16 resultados para Flow Simulation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Aims: Angiographic ectasias and aneurysms in stented segments have been associated with late stent thrombosis. Using optical coherence tomography (OCT), some stented segments show coronary evaginations reminiscent of ectasias. The purpose of this study was to explore, using computational fluid-dynamic (CFD) simulations, whether OCT-detected coronary evaginations can induce local changes in blood flow. Methods and results: OCT-detected evaginations are defined as outward bulges in the luminal vessel contour between struts, with the depth of the bulge exceeding the actual strut thickness. Evaginations can be characterised cross ectionally by depth and along the stented segment by total length. Assuming an ellipsoid shape, we modelled 3-D evaginations with different sizes by varying the depth from 0.2-1.0 mm, and the length from 1-9 mm. For the flow simulation we used average flow velocity data from non-diseased coronary arteries. The change in flow with varying evagination sizes was assessed using a particle tracing test where the particle transit time within the segment with evagination was compared with that of a control vessel. The presence of the evagination caused a delayed particle transit time which increased with the evagination size. The change in flow consisted locally of recirculation within the evagination, as well as flow deceleration due to a larger lumen - seen as a deflection of flow towards the evagination. Conclusions: CFD simulation of 3-D evaginations and blood flow suggests that evaginations affect flow locally, with a flow disturbance that increases with increasing evagination size.
Resumo:
Elevated systemic haematocrit (Hct) increases risk of cardiovascular disorders, such as stroke and myocardial infarction. One possible pathophysiological mechanism could be a disturbance of the blood-endothelium interface. It has been shown that blood interacts with the endothelial surface via a thick hydrated macromolecular layer (the 'glycocalyx', or 'endothelial surface layer'--ESL), modulating various biological processes, including inflammation, permeability and atherosclerosis. However, the consequences of elevated Hct on the functional properties of this interface are incompletely understood. Thus, we combined intravital microscopy of an erythropoietin overexpressing transgenic mouse line (tg6) with excessive erythrocytosis (Hct 0.85), microviscometric analysis of haemodynamics, and a flow simulation model to assess the effects of elevated Hct on glycocalyx/ESL thickness and flow resistance. We show that the glycocalyx/ESL is nearly abolished in tg6 mice (thickness: wild-type control: 0.52 μm; tg6: 0.13 μm; P < 0.001). However, the corresponding reduction in network flow resistance contributes <20% to the maintenance of total peripheral resistance observed in tg6 mice. This suggests that the pathological effects of elevated Hct in these mice, and possibly also in polycythaemic humans, may relate to biological corollaries of a reduced ESL thickness and the consequent alteration in the blood-endothelium interface, rather than to an increase of flow resistance.
Resumo:
BACKGROUND Numerous studies have demonstrated an association between endothelial shear stress (ESS) and neointimal formation after stent implantation. However, the role of ESS on the composition of neointima and underlying plaque remains unclear. METHODS Patients recruited in the Comfortable AMI-IBIS 4 study implanted with bare metal stents (BMS) or biolimus eluting stents (BES) that had biplane coronary angiography at 13month follow-up were included in the analysis. The intravascular ultrasound virtual-histology (IVUS-VH) and the angiographic data were used to reconstruct the luminal surface, and the stent in the stented segments. Blood flow simulation was performed in the stent surface, which was assumed to represent the luminal surface at baseline, to assess the association between ESS and neointima thickness. The predominant ESS was estimated in 3-mm segments and was correlated with the amount of neointima, neointimal tissue composition, and with the changes in the underlying plaque burden and composition. RESULTS Forty three patients (18 implanted with BMS and 25 with BES) were studied. In both stent groups negative correlations were noted between ESS and neointima thickness in BMS (P<0.001) and BES (P=0.002). In BMS there was a negative correlation between predominant ESS and the percentage of the neointimal necrotic core component (P=0.015). In BES group, the limited neointima formation did not allow evaluation of the effect of ESS on its tissue characteristics. ESS did not affect vessel wall remodeling and the plaque burden and composition behind BMS (P>0.10) and BES (P>0.45). CONCLUSIONS ESS determines neointimal formation in both BMS and BES and affects the composition of the neointima in BMS. Conversely, ESS does not impact the plaque behind struts irrespective of stent type throughout 13months of follow-up.
Resumo:
1 Natural soil profiles may be interpreted as an arrangement of parts which are characterized by properties like hydraulic conductivity and water retention function. These parts form a complicated structure. Characterizing the soil structure is fundamental in subsurface hydrology because it has a crucial influence on flow and transport and defines the patterns of many ecological processes. We applied an image analysis method for recognition and classification of visual soil attributes in order to model flow and transport through a man-made soil profile. Modeled and measured saturation-dependent effective parameters were compared. We found that characterizing and describing conductivity patterns in soils with sharp conductivity contrasts is feasible. Differently, solving flow and transport on the basis of these conductivity maps is difficult and, in general, requires special care for representation of small-scale processes.
Resumo:
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.
Resumo:
Long Term Evolution (LTE) is a cellular technology foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of three distinct scheduling schemes for LTE uplink with main focus on the impact of flow-level dynamics resulting from the random user behaviour. We apply a combined analytical/simulation approach which enables fast evaluation of flow-level performance measures. The results show that by considering flow-level dynamics we are able to observe performance trends that would otherwise stay hidden if only packet-level analysis is performed.
Resumo:
Renal replacement therapy by hemodialysis requires a permanent vascular access. Implantable ports offer a potential alternative to standard vascular access strategies although their development is limited both in number and extent. We explored the fluid dynamics within two new percutaneous bone-anchored dialysis port prototypes, both by in vitro experiments and computer simulation. The new port is to be fixed to bone and allows the connection of a dialysis machine to a central venous catheter via a built-in valve. We found that the pressure drop induced by the two ports was between 20 and 50 mmHg at 500 ml/min, which is comparable with commercial catheter connectors (15–80 mmHg). We observed the formation of vortices in both geometries, and a shear rate in the physiological range (<10,000s-1), which is lower than maximal shear rates reported in commercial catheters (up to 13,000s-1). A difference in surface shear rate of 15% between the two ports was obtained.
Resumo:
BACKGROUND Efficiently performed basic life support (BLS) after cardiac arrest is proven to be effective. However, cardiopulmonary resuscitation (CPR) is strenuous and rescuers' performance declines rapidly over time. Audio-visual feedback devices reporting CPR quality may prevent this decline. We aimed to investigate the effect of various CPR feedback devices on CPR quality. METHODS In this open, prospective, randomised, controlled trial we compared three CPR feedback devices (PocketCPR, CPRmeter, iPhone app PocketCPR) with standard BLS without feedback in a simulated scenario. 240 trained medical students performed single rescuer BLS on a manikin for 8min. Effective compression (compressions with correct depth, pressure point and sufficient decompression) as well as compression rate, flow time fraction and ventilation parameters were compared between the four groups. RESULTS Study participants using the PocketCPR performed 17±19% effective compressions compared to 32±28% with CPRmeter, 25±27% with the iPhone app PocketCPR, and 35±30% applying standard BLS (PocketCPR vs. CPRmeter p=0.007, PocketCPR vs. standard BLS p=0.001, others: ns). PocketCPR and CPRmeter prevented a decline in effective compression over time, but overall performance in the PocketCPR group was considerably inferior to standard BLS. Compression depth and rate were within the range recommended in the guidelines in all groups. CONCLUSION While we found differences between the investigated CPR feedback devices, overall BLS quality was suboptimal in all groups. Surprisingly, effective compression was not improved by any CPR feedback device compared to standard BLS. All feedback devices caused substantial delay in starting CPR, which may worsen outcome.
Resumo:
Using quantum Monte Carlo, we study the nonequilibrium transport of magnetization in large open strongly correlated quantum spin-12 systems driven by purely dissipative processes that conserve the uniform or staggered magnetization, disregarding unitary Hamiltonian dynamics. We prepare both a low-temperature Heisenberg ferromagnet and an antiferromagnet in two parts of the system that are initially isolated from each other. We then bring the two subsystems in contact and study their real-time dissipative dynamics for different geometries. The flow of the uniform or staggered magnetization from one part of the system to the other is described by a diffusion equation that can be derived analytically.
Resumo:
A computer simulation study describing the electrophoretic separation and migration of methadone enantiomers in presence of free and immobilized (2-hydroxypropyl)-β-CD is presented. The 1:1 interaction of methadone with the neutral CD was simulated by using experimentally determined mobilities and complexation constants for the complexes in a low-pH BGE comprising phosphoric acid and KOH. The use of complex mobilities represents free solution conditions with the chiral selector being a buffer additive, whereas complex mobilities set to zero provide data that mimic migration and separation with the chiral selector being immobilized, that is CEC conditions in absence of unspecific interaction between analytes and the chiral stationary phase. Simulation data reveal that separations are quicker, electrophoretic displacement rates are reduced, and sensitivity is enhanced in CEC with on-column detection in comparison to free solution conditions. Simulation is used to study electrophoretic analyte behavior at the interface between sample and the CEC column with the chiral selector (analyte stacking) and at the rear end when analytes leave the environment with complexation (analyte destacking). The latter aspect is relevant for off-column analyte detection in CEC and is described here for the first time via the dynamics of migrating analyte zones. Simulation provides insight into means to counteract analyte dilution at the column end via use of a BGE with higher conductivity. Furthermore, the impact of EOF on analyte migration, separation, and detection for configurations with the selector zone being displaced or remaining immobilized under buffer flow is simulated. In all cases, the data reveal that detection should occur within or immediately after the selector zone.
Resumo:
Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.
Resumo:
We analyzed observations of interstellar neutral helium (ISN He) obtained from the Interstellar Boundary Explorer (IBEX) satellite during its first six years of operation. We used a refined version of the ISN He simulation model, presented in the companion paper by Sokol et al. (2015b), along with a sophisticated data correlation and uncertainty system and parameter fitting method, described in the companion paper by Swaczyna et al. We analyzed the entire data set together and the yearly subsets, and found the temperature and velocity vector of ISN He in front of the heliosphere. As seen in the previous studies, the allowable parameters are highly correlated and form a four-dimensional tube in the parameter space. The inflow longitudes obtained from the yearly data subsets show a spread of similar to 6 degrees, with the other parameters varying accordingly along the parameter tube, and the minimum chi(2) value is larger than expected. We found, however, that the Mach number of the ISN He flow shows very little scatter and is thus very tightly constrained. It is in excellent agreement with the original analysis of ISN He observations from IBEX and recent reanalyses of observations from Ulysses. We identify a possible inaccuracy in the Warm Breeze parameters as the likely cause of the scatter in the ISN He parameters obtained from the yearly subsets, and we suppose that another component may exist in the signal or a process that is not accounted for in the current physical model of ISN He in front of the heliosphere. From our analysis, the inflow velocity vector, temperature, and Mach number of the flow are equal to lambda(ISNHe) = 255 degrees.8 +/- 0 degrees.5, beta(ISNHe) = 5 degrees.16 +/- 0 degrees.10, T-ISNHe = 7440 +/- 260 K, nu(SNHe) = 25.8 +/- 0.4 km s(-1), and M-ISNHe = 5.079 +/- 0.028, with uncertainties strongly correlated along the parameter tube.
Resumo:
Direct Simulation Monte Carlo (DSMC) is a powerful numerical method to study rarefied gas flows such as cometary comae and has been used by several authors over the past decade to study cometary outflow. However, the investigation of the parameter space in simulations can be time consuming since 3D DSMC is computationally highly intensive. For the target of ESA's Rosetta mission, comet 67P/Churyumov-Gerasimenko, we have identified to what extent modification of several parameters influence the 3D flow and gas temperature fields and have attempted to establish the reliability of inferences about the initial conditions from in situ and remote sensing measurements. A large number of DSMC runs have been completed with varying input parameters. In this work, we present the simulation results and conclude on the sensitivity of solutions to certain inputs. It is found that among cases of water outgassing, the surface production rate distribution is the most influential variable to the flow field.