21 resultados para Flow Pattern
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In an effort to understand the fate of inhaled submicron particles in the small sacs, or alveoli, comprising the gas-exchange region of the lung, we calculated the flow in three-dimensional (3D) rhythmically expanding models of alveolated ducts. Since convection toward the alveolar walls is a precursor to particle deposition, it was the goal of this paper to investigate the streamline maps' dependence upon alveoli location along the acinar tree. On the alveolar midplane, the recirculating flow pattern exhibited closed streamlines with a stagnation saddle point. Off the midplane we found no closed streamlines but nested, funnel-like, spiral, structures (reminiscent of Russian nesting dolls) that were directed towards the expanding walls in inspiration, and away from the contracting walls in expiration. These nested, funnel-like, structures were surrounded by air that flowed into the cavity from the central channel over inspiration and flowed from the cavity to the central channel over expiration. We also found that fluid particle tracks exhibited similar nested funnel-like spiral structures. We conclude that these unique alveolar flow structures may be of importance in enhancing deposition. In addition, due to inertia, the nested, funnel-like, structures change shape and position slightly during a breathing cycle, resulting in flow mixing. Also, each inspiration feeds a fresh supply of particle-laden air from the central channel to the region surrounding the mixing region. Thus, this combination of flow mixer and flow feeder makes each individual alveolus an effective mixing unit, which is likely to play an important role in determining the overall efficiency of convective mixing in the acinus.
Resumo:
BACKGROUND AND AIM OF THE STUDY: Combined replacement of the aortic valve and ascending aorta using a composite graft represents the standard treatment for dilated aortic root with concomitant structural damage of the aortic valve, especially when the aortic valve cannot be preserved. Unfortunately, hemodynamic changes associated with prosthetic replacement of the aortic root have not been fully elucidated. The study aim was to compare hemodynamics within the replaced aortic root using either a prosthetic vascular graft with bulges mimicking the sinuses of Valsalva and including a stented pericardial valve, or a straight xenopericardial conduit and a stentless porcine valve. METHODS: Between July 2004 and March 2006, a total of 35 patients (mean age 65.2 years: range: 32-80 years) was enrolled into the present study. Aortic root replacement was performed in nine patients with a Valsalva graft (Gelweave Valsalva; Vascutek, Renfrewshire, UK) including a stented pericardial valve, and in 19 patients with a xenopericardial conduit containing a stentless porcine valve. All patients underwent postoperative magnetic resonance imaging (MRI). A control group of seven patients allowed for comparison with native aortic root hemodynamics. RESULTS: Maximum flow-velocity above the aortic valve as one marker of compliance of the aortic root was slightly higher in patients with a Valsalva graft compared to native aortic roots (1.9 m/s versus 1.3 m/s, p = 0.001), but was significantly lower than in patients with the xenopericardial graft without neo-sinuses (1.3 m/s versus 2.4 m/s, p < 0.001). CONCLUSION: The pre-shaped bulges in the prosthetic Valsalva graft effectively mimic the native sinuses of Valsalva, improve compliance of the aortic root, and result in a more physiologic flow pattern, as demonstrated by postoperative MRI.
Resumo:
For a three-dimensional vertically-oriented fault zone, we consider the coupled effects of fluid flow, heat transfer and reactive mass transport, to investigate the patterns of fluid flow, temperature distribution, mineral alteration and chemically induced porosity changes. We show, analytically and numerically, that finger-like convection patterns can arise in a vertically-oriented fault zone. The onset and patterns of convective fluid flow are controlled by the Rayleigh number which is a function of the thermal properties of the fluid and the rock, the vertical temperature gradient, and the height and the permeability of the fault zone. Vigorous fluid flow causes low temperature gradients over a large region of the fault zone. In such a case, flow across lithological interfaces becomes the most important mechanism for the formation of sharp chemical reaction fronts. The degree of rock buffering, the extent and intensity of alteration, the alteration mineralogy and in some cases the formation of ore deposits are controlled by the magnitude of the flow velocity across these compositional interfaces in the rock. This indicates that alteration patterns along compositional boundaries in the rock may provide some insights into the convection pattern. The advective mass and heat exchanges between the fault zone and the wallrock depend on the permeability contrast between the fault zone and the wallrock. A high permeability contrast promotes focussed convective flow within the fault zone and diffusive exchange of heat and chemical reactants between the fault zone and the wallrock. However, a more gradual permeability change may lead to a regional-scale convective flow system where the flow pattern in the fault affects large-scale fluid flow, mass transport and chemical alteration in the wallrocks
Resumo:
Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.
Resumo:
We combine the technique of femtosecond degenerate four-wave mixing (fs-DFWM) with a high repetition-rate pulsed supersonic jet source to obtain the rotational coherence spectrum (RCS) of cold cyclohexane (C(6)H(12)) with high signal/noise ratio. In the jet expansion, the near-parallel flow pattern combined with rapid translational cooling effectively eliminate dephasing collisions, giving near-constant RCS signal intensities over time delays up to 5 ns. The vibrational cooling in the jet eliminates the thermally populated vibrations that complicate the RCS coherences of cyclohexane at room temperature [Bragger, G.; et al. J. Phys. Chem. A 2011, 115, 9567]. The rotational cooling reduces the high-J rotational-state population, yielding the most accurate ground-state rotational constant to date, B(0) = 4305.859(9) MHz. Based on this B(0), a reanalysis of previous room-temperature gas-cell RCS measurements of cydohexane gives improved vibration rotation interaction constants for the v(32), v(6), v(16), and v(24) vibrational states. Combining the experimental B(0)(C(6)H(12)) with CCSD(T) calculations yields a very accurate semiexperimental equilibrium structure of the chair isomer of cyclohexane
Resumo:
This study presents a proxy-based, quantitative reconstruction of cold-season (mean October to May, TOct–May) air temperatures covering nearly the entire last millennium (AD 1060–2003, some hiatuses). The reconstruction was based on subfossil chrysophyte stomatocyst remains in the varved sediments of high-Alpine Lake Silvaplana, eastern Swiss Alps (46°27’N, 9°48′W, 1791 m a.s.l.). Previous studies have demonstrated the reliability of this proxy by comparison to meteorological data. Cold-season air temperatures could therefore be reconstructed quantitatively, at a high resolution (5-yr) and with high chronological accuracy. Spatial correlation analysis suggests that the reconstruction reflects cold season climate variability over the high- Alpine region and substantial parts of central and western Europe. Cold-season temperatures were characterized by a relatively stable first part of the millennium until AD 1440 (2σ of 5-yr mean values = 0.7 °C) and highly variable TOct–May after that (AD 1440–1900, 2σ of 5-yr mean values = 1.3 °C). Recent decades (AD, 1991-present) were unusually warm in the context of the last millennium (exceeding the 2σ-range of the mean decadal TOct–May) but this warmth was not unprecedented. The coolest decades occurred from AD 1510–1520 and AD 1880–1890. The timing of extremely warm and cold decades is generally in good agreement with documentary data representing Switzerland and central European lowlands. The transition from relatively stable to highly variable TOct–May coincided with large changes in atmospheric circulation patterns in the North Atlantic region. Comparison of reconstructed cold season temperatures to the North Atlantic Oscillation index (NAO) during the past 1000 years showed that the relatively stable and warm conditions at the study site until AD 1440 coincided with a persistent positive mode of the NAO. We propose that the transition to large TOct–May variability around AD 1440 was linked to the subsequent absence of this persistent zonal flow pattern, which would allow other climatic drivers to gain importance in the study area. From AD 1440–1900, the similarity of reconstructed TOct–May to reconstructed air pressure in the Siberian High suggests a relatively strong influence of continental anticyclonic systems on Alpine cold season climate parameters during periods when westerly airflow was subdued. A more continental type of atmospheric circulation thus seems to be characteristic for the Little Ice Age in Europe. Comparison of Toct–May to summer temperature reconstructions from the same study site shows that, as expected, summer and cold season temperature trends and variability differed completely throughout nearly the entire last 1000 years. Since AD 1980, however, summer and cold season temperatures show a simultaneous, strong increase, which is unprecedented in the context of the last millennium. We suggest that the most likely explanation for this recent trend is anthropogenic greenhouse gas (GHG) forcing.
Resumo:
Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure. (C) 2001 Elsevier Science Ltd. AU rights reserved.
Resumo:
The influence of a reduced Greenland Ice Sheet (GrIS) on Greenland's surface climate during the Eemian interglacial is studied using a set of simulations with different GrIS realizations performed with a comprehensive climate model. We find a distinct impact of changes in the GrIS topography on Greenland's surface air temperatures (SAT) even when correcting for changes in surface elevation, which influences SAT through the lapse rate effect. The resulting lapse-rate-corrected SAT anomalies are thermodynamically driven by changes in the local surface energy balance rather than dynamically caused through anomalous advection of warm/cold air masses. The large-scale circulation is indeed very stable among all sensitivity experiments and the Northern Hemisphere (NH) flow pattern does not depend on Greenland's topography in the Eemian. In contrast, Greenland's surface energy balance is clearly influenced by changes in the GrIS topography and this impact is seasonally diverse. In winter, the variable reacting strongest to changes in the topography is the sensible heat flux (SHF). The reason is its dependence on surface winds, which themselves are controlled to a large extent by the shape of the GrIS. Hence, regions where a receding GrIS causes higher surface wind velocities also experience anomalous warming through SHF. Vice-versa, regions that become flat and ice-free are characterized by low wind speeds, low SHF, and anomalous low winter temperatures. In summer, we find surface warming induced by a decrease in surface albedo in deglaciated areas and regions which experience surface melting. The Eemian temperature records derived from Greenland proxies, thus, likely include a temperature signal arising from changes in the GrIS topography. For the Eemian ice found in the NEEM core, our model suggests that up to 3.1 °C of the annual mean Eemian warming can be attributed to these topography-related processes and hence is not necessarily linked to large-scale climate variations.
Resumo:
The link between high precipitation in Dronning Maud Land (DML), Antarctica, and the large-scale atmospheric circulation is investigated using ERA-Interim data for 1979–2009. High-precipitation events are analyzed at Halvfarryggen situated in the coastal region of DML and at Kohnen Station located in its interior. This study further includes a comprehensive comparison of high precipitation in ERA-Interim with precipitation data from the Antarctic Mesoscale Prediction System (AMPS) and snow accumulation measurements from automatic weather stations (AWSs), with the limitations of such a comparison being discussed. The ERA-Interim and AMPS precipitation data agree very well. However, the correspondence between high precipitation in ERA-Interim and high snow accumulation at the AWSs is relatively weak. High-precipitation events at both Halvfarryggen and Kohnen are typically associated with amplified upper level waves. This large-scale atmospheric flow pattern is preceded by the downstream development of a Rossby wave train from the eastern South Pacific several days before the precipitation event. At the surface, a cyclone located over the Weddell Sea is the main synoptic ingredient for high precipitation both at Halvfarryggen and at Kohnen. A blocking anticyclone downstream is not a requirement for high precipitation per se, but a larger share of blocking occurrences during the highest-precipitation days in DML suggests that these blocks strengthen the vertically integrated water vapor transport (IVT) into DML. A strong link between high precipitation and the IVT perpendicular to the local orography suggests that IVT could be used as a “proxy” for high precipitation, in particular over DML's interior.
Resumo:
Although both the subjective and physiological effects of abused psychotropic substances have been characterized, less is known about their effects on brain function. We examined the actions of intravenous diacetylmorphine (heroin), the most widely abused opioid, on regional cerebral blood flow (rCBF), as assessed by perfusion-weighted MR imaging (PWI) in a double-blind and placebo-controlled setting.
Resumo:
The Long Term Evolution (LTE) cellular technology is expected to extend the capacity and improve the performance of current 3G cellular networks. Among the key mechanisms in LTE responsible for traffic management is the packet scheduler, which handles the allocation of resources to active flows in both the frequency and time dimension. This paper investigates for various scheduling scheme how they affect the inter-cell interference characteristics and how the interference in turn affects the user’s performance. A special focus in the analysis is on the impact of flow-level dynamics resulting from the random user behaviour. For this we use a hybrid analytical/simulation approach which enables fast evaluation of flow-level performance measures. Most interestingly, our findings show that the scheduling policy significantly affects the inter-cell interference pattern but that the scheduler specific pattern has little impact on the flow-level performance.
Resumo:
Functional magnetic resonance imaging (fMRI) is presently either performed using blood oxygenation level-dependent (BOLD) contrast or using cerebral blood flow (CBF), measured with arterial spin labeling (ASL) technique. The present fMRI study aimed to provide practical hints to favour one method over the other. It involved three different acquisition methods during visual checkerboard stimulation on nine healthy subjects: 1) CBF contrast obtained from ASL, 2) BOLD contrast extracted from ASL and 3) BOLD contrast from Echo planar imaging. Previous findings were replicated; i) no differences between the three measurements were found in the location of the activated region; ii) differences were found in the temporal characteristics of the signals and iii) BOLD has significantly higher sensitivity than ASL perfusion. ASL fMRI was favoured when the investigation demands for perfusion and task related signal changes. BOLD fMRI is more suitable in conjunction with fast event related design.
Resumo:
BACKGROUND: Morphological changes in preterm infants with bronchopulmonary dysplasia (BPD) have functional consequences on lung volume, ventilation inhomogeneity and respiratory mechanics. Although some studies have shown lower lung volumes and increased ventilation inhomogeneity in BPD infants, conflicting results exist possibly due to differences in sedation and measurement techniques. METHODOLOGY/PRINCIPAL FINDINGS: We studied 127 infants with BPD, 58 preterm infants without BPD and 239 healthy term-born infants, at a matched post-conceptional age of 44 weeks during quiet natural sleep according to ATS/ERS standards. Lung function parameters measured were functional residual capacity (FRC) and ventilation inhomogeneity by multiple breath washout as well as tidal breathing parameters. Preterm infants with BPD had only marginally lower FRC (21.4 mL/kg) than preterm infants without BPD (23.4 mL/kg) and term-born infants (22.6 mL/kg), though there was no trend with disease severity. They also showed higher respiratory rates and lower ratios of time to peak expiratory flow and expiratory time (t(PTEF)/t(E)) than healthy preterm and term controls. These changes were related to disease severity. No differences were found for ventilation inhomogeneity. CONCLUSIONS: Our results suggest that preterm infants with BPD have a high capacity to maintain functional lung volume during natural sleep. The alterations in breathing pattern with disease severity may reflect presence of adaptive mechanisms to cope with the disease process.
Resumo:
OBJECTIVE To determine the pulmonary venous flow velocity (PVFV) values in a large normal population. DESIGN Prospective study in consecutive individuals. SETTING University hospital. METHODS Among 404 normal individuals, the flow velocity pattern in the right upper pulmonary vein was recorded in 315 subjects using transthoracic echocardiography, and in both upper pulmonary veins in 100 subjects using transoesophageal echocardiography. Subjects were divided into five age groups. The PVFV values were compared between transthoracic and transoesophageal echocardiography within the age groups, and intraindividually between the right and left upper pulmonary veins in transoesophageal echocardiography. RESULTS Normal PVFV values for the right upper pulmonary vein in transthoracic and transoesophageal echocardiography are presented. The duration of flow reversal at atrial contraction was overestimated using transthoracic echocardiography (mean (SD): 96 (21) ms in transoesophageal echocardiography, 120 (28) ms in transthoracic echocardiography, p < 0.0001). Systolic to diastolic peak flow velocity ratio (S:D) increased earlier with advancing age with transoesophageal echocardiography than with transthoracic echocardiography. Similar results were found for the corresponding time-velocity integrals. Data from the left and right upper pulmonary veins differed with respect to onset and deceleration of flow velocities, but not for flow durations or peak velocities. CONCLUSIONS Normal PVFV values generally show a wide range. The data presented will be of value in assessing left ventricular diastolic function and mitral regurgitation using the PVFV pattern.