34 resultados para Flood risk management

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main goals of this study were to identifythe alpine torrent catchments that are sensitive to climatic changes and to assess the robustness of the methods for the elaboration of flood and debris flow hazard zone maps to specific effects of climate changes. In this study, a procedure for the identification and localization of torrent catchments in which the climate scenarios will modify the hazard situation was developed. In two case studies, the impacts of a potential increase of precipitation intensities to the delimited hazard zones were studied. The identification and localization of the torrent and river catchments, where unfavourable changes in the hazard situation occur, could eliminate speculative and unnecessary measures against the impacts of climate changes like a general enlargement of hazard zones or a general over dimensioning of protection structures for the whole territory. The results showed a high spatial variability of the sensitivity of catchments to climate changes. In sensitive catchments, the sediment management in alpine torrents will meet future challenges due to a higher rate for sediment removal from retention basins. The case studies showed a remarkable increase of the areas affected by floods and debris flow when considering possible future precipitation intensities in hazard mapping. But, the calculated increase in extent of future hazard zones lay within the uncertainty of the methods used today for the delimitation of the hazard zones. Thus, the consideration of the uncertainties laying in the methods for the elaboration of hazard zone maps in the torrent and river catchments sensitive to climate changes would provide a useful instrument for the consideration of potential future climate conditions. The study demonstrated that weak points in protection structures in future will become more important in risk management activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There may be a considerable gap between LDL cholesterol (LDL-C) and blood pressure (BP) goal values recommended by the guidelines and results achieved in daily practice.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a consequence of flood impacts, communities inhabiting mountain areas are increasingly affected by considerable damage to infrastructure and property. The design of effective flood risk mitigation strategies and their subsequent implementation is crucial for a sustainable development in mountain areas. The assessment of the dynamic evolution of flood risk is the pillar of any subsequent planning process that is targeted at a reduction of the expected adverse consequences of the hazard impact. Given these premises, firstly, a comprehensive method to derive flood hazard process scenarios for well-defined areas at risk is presented. Secondly, conceptualisations of a static and dynamic flood risk assessment are provided. These are based on formal schemes to compute the risk mitigation performance of devised mitigation strategies within the framework of economic cost-benefit analysis. In this context, techniques suitable to quantify the expected losses induced by the identified flood impacts are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starting with an overview on losses due to mountain hazards in the Russian Federation and the European Alps, the question is raised why a substantial number of events still are recorded—despite considerable efforts in hazard mitigation and risk reduction. The main reason for this paradox lies in a missing dynamic risk-based approach, and it is shown that these dynamics have different roots: firstly, neglecting climate change and systems dynamics, the development of hazard scenarios is based on the static approach of design events. Secondly, due to economic development and population dynamics, the elements at risk exposed are subject to spatial and temporal changes. These issues are discussed with respect to temporal and spatial demands. As a result, it is shown how risk is dynamic on a long-term and short-term scale, which has to be acknowledged in the risk concept if this concept is targeted at a sustainable development of mountain regions. A conceptual model is presented that can be used for dynamical risk assessment, and it is shown by different management strategies how this model may be converted into practice. Furthermore, the interconnectedness and interaction between hazard and risk are addressed in order to enhance prevention, the level of protection and the degree of preparedness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last forty years, applying dendrogeomorphology to palaeoflood analysis has improved estimates of the frequency and magnitude of past floods worldwide. This paper reviews the main results obtained by applying dendrogeomorphology to flood research in several case studies in Central Spain. These dendrogeomorphological studies focused on the following topics: (1) anatomical analysis to understand the physiological response of trees to flood damage and improve sampling efficiency; (2) compiling robust flood chronologies in ungauged mountain streams, (3) determining flow depth and estimating flood discharge using two-dimensional hydraulic modelling, and comparing them with other palaeostage indicators; (4) calibrating hydraulic model parameters (i.e. Manning roughness); and (5) implementing stochastic-based, cost–benefit analysis to select optimal mitigation measures. The progress made in these areas is presented with suggestions for further research to improve the applicability of dendrogeochronology to palaeoflood studies. Further developments will include new methods for better identification of the causes of specific types of flood damage to trees (e.g. tilted trees) or stable isotope analysis of tree rings to identify the climatic conditions associated with periods of increasing flood magnitude or frequency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrogeomorphology uses information sources recorded in the roots, trunks and branches of trees and bushes located in the fluvial system to complement (or sometimes even replace) systematic and palaeohydrological records of past floods. The application of dendrogeomorphic data sources and methods to palaeoflood analysis over nearly 40 years has allowed improvements to be made in frequency and magnitude estimations of past floods. Nevertheless, research carried out so far has shown that the dendrogeomorphic indicators traditionally used (mainly scar evidence), and their use to infer frequency and magnitude, have been restricted to a small, limited set of applications. New possibilities with enormous potential remain unexplored. New insights in future research of palaeoflood frequency and magnitude using dendrogeomorphic data sources should: (1) test the application of isotopic indicators (16O/18O ratio) to discover the meteorological origin of past floods; (2) use different dendrogeomorphic indicators to estimate peak flows with 2D (and 3D) hydraulic models and study how they relate to other palaeostage indicators; (3) investigate improved calibration of 2D hydraulic model parameters (roughness); and (4) apply statistics-based cost–benefit analysis to select optimal mitigation measures. This paper presents an overview of these innovative methodologies, with a focus on their capabilities and limitations in the reconstruction of recent floods and palaeofloods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of efficient hydrological risk mitigation strategies and their subsequent implementation relies on a careful vulnerability analysis of the elements exposed. Recently, extensive research efforts were undertaken to develop and refine empirical relationships linking the structural vulnerability of buildings to the impact forces of the hazard processes. These empirical vulnerability functions allow estimating the expected direct losses as a result of the hazard scenario based on spatially explicit representation of the process patterns and the elements at risk classified into defined typological categories. However, due to the underlying empiricism of such vulnerability functions, the physics of the damage-generating mechanisms for a well-defined element at risk with its peculiar geometry and structural characteristics remain unveiled, and, as such, the applicability of the empirical approach for planning hazard-proof residential buildings is limited. Therefore, we propose a conceptual assessment scheme to close this gap. This assessment scheme encompasses distinct analytical steps: modelling (a) the process intensity, (b) the impact on the element at risk exposed and (c) the physical response of the building envelope. Furthermore, these results provide the input data for the subsequent damage evaluation and economic damage valuation. This dynamic assessment supports all relevant planning activities with respect to a minimisation of losses, and can be implemented in the operational risk assessment procedure.