28 resultados para Fishery for individual species
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Strong genetic change over short spatial scales is surprising among marine species with high dispersal potential. Concordant breaks among several species signals a role for geographic barriers to dispersal. Along the coast of California, such breaks have not been seen across the biogeographic barrier of Point Conception, but other potential geographic boundaries have been surveyed less often.;We tested for strong-population structure in 11 species of Sebastes sampled across two regions containing potential dispersal barriers, and conducted a meta-analysis including four additional species. We show two strong breaks north of Monterey Bay, spanning an oceanographic gradient and an upwelling jet. Moderate genetic structure is just as common in the north as it is in the south, across the biogeographic break at Point Conception. Gene Xow is generally higher among deep-water species, but these conclusions are confounded by phylogeny. Species in the subgenus Sebastosomus have higher structure than those in the subgenus;Pteropodus, despite having larvae with longer pelagic phases. DiVerences in settlement behavior in the face of ocean currents might help explain these diVerences. Across similar species across the same coastal environment, we document a wide variety of patterns in gene Xow, suggesting that interaction of individual species traits such as settlement behavior with environmental factors such as;oceanography can strongly impact population structure
Resumo:
Pasteurellaceae are bacteria with an important role as primary or opportunistic, mainly respiratory, pathogens in domestic and wild animals. Some species of Pasteurellaceae cause severe diseases with high economic losses in commercial animal husbandry and are of great diagnostic concern. Because of new data on the phylogeny of Pasteurellaceae, their taxonomy has recently been revised profoundly, thus requiring an improved phenotypic differentiation procedure to identify the individual species of this family. A new and simplified procedure to identify species of Actinobacillus, Avibacterium, Gallibacterium, Haemophilus, Mannheimia, Nicoletella, and Pasteurella, which are most commonly isolated from clinical samples of diseased animals in veterinary diagnostic laboratories, is presented in the current study. The identification procedure was evaluated with 40 type and reference strains and with 267 strains from routine diagnostic analysis of various animal species, including 28 different bacterial species. Type, reference, and field strains were analyzed by 16S ribosomal RNA (rrs) and rpoB gene sequencing for unambiguous species determination as a basis to evaluate the phenotypic differentiation schema. Primary phenotypic differentiation is based on beta-nicotinamide adenine dinucleotide (beta-NAD) dependence and hemolysis, which are readily determined on the isolation medium. The procedure divides the 28 species into 4 groups for which particular biochemical reactions were chosen to identify the bacterial species. The phenotypic identification procedure allowed researchers to determine the species of 240 out of 267 field strains. The procedure is an easy and cost-effective system for the rapid identification of species of the Pasteurellaceae family isolated from clinical specimens of animals.
Resumo:
* Hundreds of experiments have now manipulated species richness (SR) of various groups of organisms and examined how this aspect of biological diversity influences ecosystem functioning. Ecologists have recently expanded this field to look at whether phylogenetic diversity (PD) among species, often quantified as the sum of branch lengths on a molecular phylogeny leading to all species in a community, also predicts ecological function. Some have hypothesized that phylogenetic divergence should be a superior predictor of ecological function than SR because evolutionary relatedness represents the degree of ecological and functional differentiation among species. But studies to date have provided mixed support for this hypothesis. * Here, we reanalyse data from 16 experiments that have manipulated plant SR in grassland ecosystems and examined the impact on above-ground biomass production over multiple time points. Using a new molecular phylogeny of the plant species used in these experiments, we quantified how the PD of plants impacts average community biomass production as well as the stability of community biomass production through time. * Using four complementary analyses, we show that, after statistically controlling for variation in SR, PD (the sum of branches in a molecular phylogenetic tree connecting all species in a community) is neither related to mean community biomass nor to the temporal stability of biomass. These results run counter to past claims. However, after controlling for SR, PD was positively related to variation in community biomass over time due to an increase in the variances of individual species, but this relationship was not strong enough to influence community stability. * In contrast to the non-significant relationships between PD, biomass and stability, our analyses show that SR per se tends to increase the mean biomass production of plant communities, after controlling for PD. The relationship between SR and temporal variation in community biomass was either positive, non-significant or negative depending on which analysis was used. However, the increases in community biomass with SR, independently of PD, always led to increased stability. These results suggest that PD is no better as a predictor of ecosystem functioning than SR. * Synthesis. Our study on grasslands offers a cautionary tale when trying to relate PD to ecosystem functioning suggesting that there may be ecologically important trait and functional variation among species that is not explained by phylogenetic relatedness. Our results fail to support the hypothesis that the conservation of evolutionarily distinct species would be more effective than the conservation of SR as a way to maintain productive and stable communities under changing environmental conditions.
Resumo:
Species diversity promotes the delivery of multiple ecosystem functions (multifunctionality). However, the relative functional importance of rare and common species in driving the biodiversity–multifunctionality relationship remains unknown. We studied the relationship between the diversity of rare and common species (according to their local abundances and across nine different trophic groups), and multifunctionality indices derived from 14 ecosystem functions on 150 grasslands across a land-use intensity (LUI) gradient. The diversity of above- and below-ground rare species had opposite effects, with rare above-ground species being associated with high levels of multifunctionality, probably because their effects on different functions did not trade off against each other. Conversely, common species were only related to average, not high, levels of multifunctionality, and their functional effects declined with LUI. Apart from the community-level effects of diversity, we found significant positive associations between the abundance of individual species and multifunctionality in 6% of the species tested. Species-specific functional effects were best predicted by their response to LUI: species that declined in abundance with land use intensification were those associated with higher levels of multifunctionality. Our results highlight the importance of rare species for ecosystem multifunctionality and help guiding future conservation priorities.
Resumo:
Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.
Resumo:
Central European lake whitefish (Coregonus spp.) colonized Swiss lakes following the last glacial retreat and have undergone rapid speciation and adaptive radiation. Up to six species have been shown to coexist in some lakes, and individual species occupy specific ecological niches and have distinct feeding and reproductive ecologies. We studied methylmercury (MeHg) accumulation in sympatric whitefish species from seven Swiss lakes to determine if ecological divergence has led to different rates of MeHg bioaccumulation. In four of seven lakes, sympatric species had distinctly different MeHg levels, which varied by up to a factor of two between species. Generally, species with greater MeHg levels were smaller in body size and planktivorous, and species with lower MeHg were larger and benthivorous. While modest disparities in trophic position between species might be expected a priori to explain the divergence in MeHg, δ15N of bulk tissue did not correlate with fish MeHg in five of seven lakes. Results of a nested ANCOVA analysis across all lakes indicated that only two factors (species, lake) explained substantial portions of the variance, with species accounting for more variance (52 %) than inter-lake differences (32 %). We suggest that differences in MeHg accumulation were likely caused by diverging metabolic traits between species, such as differences in energy partitioning between anabolism and catabolism, potentially interacting with species-specific prey resource utilization. These results indicate substantial variability in MeHg accumulation between closely related fish species, illustrating that ecological speciation in fish can lead to divergent MeHg accumulation patterns.
Resumo:
Are there differences in historical and recent upper range limits of vascular plants and are such differences more pronounced in individual species groups? The limits of 1103 plants of the Northern Alps are compared to range limits in the mid-19th century. The comparison is based on two surveys. The first survey was conducted by Otto Sendtner in 1848–1853, the second in 1991–2008 during a habitat inventory. To our knowledge this is the first comparative studies reaching back to the end of the “Little Ice Age” and comprising an almost entire regional flora covering the complete range of habitats. During the recent survey, most species were found at higher elevations. Even though the differences fit well with the expected shifts due to climate warming we cannot exclude effects of sampling bias. However, we assume that the relative differences between species groups can be safely interpreted. The differences in upper limits between both surveys were significantly larger among forest species. The most important reason is probably discontinued pasture and mowing, which may have amplified possible warming effects. Nitrogen deposits may have contributed to this effect by placing competitive species in a more advantageous position.
Resumo:
There is considerable evidence that biodiversity promotes multiple ecosystem functions (multifunctionality), thus ensuring the delivery of ecosystem services important for human well-being. However, the mechanisms underlying this relationship are poorly understood, especially in natural ecosystems. We develop a novel approach to partition biodiversity effects on multifunctionality into three mechanisms and apply this to European forest data. We show that throughout Europe, tree diversity is positively related with multifunctionality when moderate levels of functioning are required, but negatively when very high function levels are desired. For two well-known mechanisms, ‘complementarity’ and ‘selection’, we detect only minor effects on multifunctionality. Instead a third, so far overlooked mechanism, the ‘jack-of-all-trades’ effect, caused by the averaging of individual species effects on function, drives observed patterns. Simulations demonstrate that jack-of-all-trades effects occur whenever species effects on different functions are not perfectly correlated, meaning they may contribute to diversity–multifunctionality relationships in many of the world’s ecosystems.
Resumo:
The extents of functional surfaces (villi, microvilli) have been estimated at different longitudinal sites, and in the entire small intestine, for three species of bats belonging to two feeding groups: insect- and fruit-eaters. In all species, surface areas and other structural quantities tended to be greatest at more cranial sites and to decline caudally. The entomophagous bat (Miniopterus inflatus) had a mean body mass (coefficient of variation) of 8.9 g (5%) and a mean intestinal length of 20 cm (6%). The surface area of the basic intestinal tube (primary mucosa) was 9.1 cm2 (10%) but this was amplified to 48 cm2 (13%) by villi and to 0.13 m2 (20%) by microvilli. The total number of microvilli per intestine was 4 x 10(11) (20%). The average microvillus had a diameter of 8 nm (10%), a length of 1.1 microns (22%) and a membrane surface area of 0.32 micron 2 (31%). In two species of fruit bats (Epomophorus wahlbergi and Lisonycteris angolensis), body masses were greater and intestines longer, the values being 76.0 g (18%) and 76.9 g (4%), and 73 cm (16%) and 72 cm (7%), respectively. Surface areas were also greater, amounting to 76 cm2 (26%) and 45 cm2 (8%) for the primary mucosa, 547 cm2 (29%) and 314 cm2 (16%) for villi and 2.7 m2 (23%) and 1.5 m2 (18%) for microvilli. An increase in the number of microvilli, 33 x 10(11) (19%) and 15 x 10(11) (24%) per intestine, contributed to the more extensive surface area but there were concomitant changes in the dimensions of microvilli. Mean diameters were 94 nm (8%) and 111 nm (4%), and mean lengths were 2.8 microns (12%) and 2.9 microns (10%), respectively. Thus, an increase in the surface area of the average microvillus to 0.83 micron 2 (12%) and 1.02 microns 2 (11%) also contributed to the greater total surface area of microvilli. The lifestyle-related differences in total microvillous surface areas persisted when structural quantities were normalised for the differences in body masses. The values for total microvillous surface area were 148 cm2g-1 (20%) in the entomophagous bat, 355 cm2g-1 (20%) in E. wahlbergi and 192 cm2g-1 (17%) in L. angolensis. This was true despite the fact that the insecteater possessed a greater length of intestine per unit of body mass: 22 mm g-1 (8%) versus 9-10 mm g-1 (9-10%) for the fruit-eaters.
Resumo:
Emerging evidence has shown that oxidation of RNA, including messenger RNA (mRNA), is elevated in several age-related diseases, although investigation of oxidized levels of individual RNA species has been limited. Recently we reported that an aldehyde reactive probe (ARP) quantitatively reacts with oxidatively modified depurinated/depyrimidinated (abasic) RNA. Here we report a novel method to isolate oxidized RNA using ARP and streptavidin beads. An oligo RNA containing abasic sites that were derivatized with ARP was pulled down by streptavidin beads, whereas a control oligo RNA was not. In vitro oxidized RNA, as well as total cellular RNA, isolated from oxidatively stressed cells was also pulled down, dependent on oxidation level, and concentrated in the pull-down fraction. Quantitative reverse transcription polymerase chain reaction (RT-PCR) using RNA in the pull-down fraction demonstrated that several gene transcripts were uniquely increased in the fraction by oxidative stress. Thus, our method selectively concentrates oxidized RNA by pull-down and enables the assessment of oxidation levels of individual RNA species. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
In most species, some individuals delay reproduction or occupy inferior breeding positions. The queue hypothesis tries to explain both patterns by proposing that individuals strategically delay breeding (queue) to acquire better breeding or social positions. In 1995, Ens, Weissing, and Drent addressed evolutionarily stable queuing strategies in situations with habitat heterogeneity. However, their model did not consider the non - mutually exclusive individual quality hypothesis, which suggests that some individuals delay breeding or occupy inferior breeding positions because they are poor competitors. Here we extend their model with individual differences in competitive abilities, which are probably plentiful in nature. We show that including even the smallest competitive asymmetries will result in individuals using queuing strategies completely different from those in models that assume equal competitors. Subsequently, we investigate how well our models can explain settlement patterns in the wild, using a long-term study on oystercatchers. This long-lived shorebird exhibits strong variation in age of first reproduction and territory quality. We show that only models that include competitive asymmetries can explain why oystercatchers' settlement patterns depend on natal origin. We conclude that predictions from queuing models are very sensitive to assumptions about competitive asymmetries, while detecting such differences in the wild is often problematic.
Resumo:
Adaptation does not necessarily lead to traits which are optimal for the population. This is because selection is often the strongest at the individual or gene level. The evolution of selfishness can lead to a 'tragedy of the commons', where traits such as aggression or social cheating reduce population size and may lead to extinction. This suggests that species-level selection will result whenever species differ in the incentive to be selfish. We explore this idea in a simple model that combines individual-level selection with ecology in two interacting species. Our model is not influenced by kin or trait-group selection. We find that individual selection in combination with competitive exclusion greatly increases the likelihood that selfish species go extinct. A simple example of this would be a vertebrate species that invests heavily into squabbles over breeding sites, which is then excluded by a species that invests more into direct reproduction. A multispecies simulation shows that these extinctions result in communities containing species that are much less selfish. Our results suggest that species-level selection and community dynamics play an important role in regulating the intensity of conflicts in natural populations.
Resumo:
Sexual selection theory largely rests on the assumption that populations contain individual variation in mating preferences and that individuals are consistent in their preferences. However, there are few empirical studies of within-population variation and even fewer have examined individual male mating preferences. Here, we studied a color polymorphic population of the Lake Victoria cichlid fish Neochromis omnicaeruleus, a species in which color morphs are associated with different sex-determining factors. Wild-caught males were tested in three-way choice trials with multiple combinations of different females belonging to the three color morphs. Compositional log-ratio techniques were applied to analyze individual male mating preferences. Large individual variation in consistency, strength, and direction of male mating preferences for female color morphs was found and hierarchical clustering of the compositional data revealed the presence of four distinct preference groups corresponding to the three color morphs in addition to a no-preference class. Consistency of individual male mating preferences was higher in males with strongest preferences. We discuss the implications of these findings for our understanding of the mechanisms underlying polymorphism in mating preferences.
Resumo:
The small trees of gas-exchanging pulmonary airways which are fed by the most distal purely conducting airways are called acini and represent the functional gas-exchanging units. The three-dimensional architecture of the acini has a strong influence on ventilation and particle deposition. Due to the difficulty to identify individual acini on microscopic lung sections the knowledge about the number of acini and their biological parameters like volume, surface area, and number of alveoli per acinus are limited. We developed a method to extract individual acini from lungs imaged by high-resolution synchrotron radiation based X-ray tomographic microscopy and estimated their volume, surface area and number of alveoli. Rat acini were isolated by semiautomatically closing the airways at the transition from conducting to gas-exchanging airways. We estimated a mean internal acinar volume of 1.148mm(3), a mean acinar surface area of 73.9mm(2), and a mean of 8470 alveoli per acinus. Assuming that the acini are similarly sized throughout different regions of the lung, we calculated that a rat lung contains 5470±833 acini. We conclude that our novel approach is well suited for the fast and reliable characterization of a large number of individual acini in healthy, diseased, or transgenic lungs of different species including humans.