9 resultados para Finanza matematica, Probabilità e statistica, Approssimazioni saddlepoint

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes computing sensitivities of upper tail probabilities of random sums by the saddlepoint approximation. The considered sensitivity is the derivative of the upper tail probability with respect to the parameter of the summation index distribution. Random sums with Poisson or Geometric distributed summation indices and Gamma or Weibull distributed summands are considered. The score method with importance sampling is considered as an alternative approximation. Numerical studies show that the saddlepoint approximation and the method of score with importance sampling are very accurate. But the saddlepoint approximation is substantially faster than the score method with importance sampling. Thus, the suggested saddlepoint approximation can be conveniently used in various scientific problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large deviations type approximation to the probability of ruin within a finite time for the compound Poisson risk process perturbed by diffusion is derived. This approximation is based on the saddlepoint method and generalizes the approximation for the non-perturbed risk process by Barndorff-Nielsen and Schmidli (Scand Actuar J 1995(2):169–186, 1995). An importance sampling approximation to this probability of ruin is also provided. Numerical illustrations assess the accuracy of the saddlepoint approximation using importance sampling as a benchmark. The relative deviations between saddlepoint approximation and importance sampling are very small, even for extremely small probabilities of ruin. The saddlepoint approximation is however substantially faster to compute.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The saddlepoint method provides accurate approximations for the distributions of many test statistics, estimators and for important probabilities arising in various stochastic models. The saddlepoint approximation is a large deviations technique which is substantially more accurate than limiting normal or Edgeworth approximations, especially in presence of very small sample sizes or very small probabilities. The outstanding accuracy of the saddlepoint approximation can be explained by the fact that it has bounded relative error.