20 resultados para Financial Failure in the Hospitality Industry
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Intermittent and continuous renal replacement therapies (RRTs) are available for the treatment of acute renal failure (ARF) in the intensive care unit (ICU). Although at present there are no adequately powered survival studies, available data suggest that both methods are equal with respect to patient outcome. Therefore, cost comparison between techniques is important for selecting the modality. Expenditures were prospectively assessed as a secondary end point during a controlled, randomized trial comparing intermittent hemodialysis (IHD) with continuous venovenous hemodiafiltration (CVVHDF). The outcome of the primary end points of this trial, that is, ICU and in-hospital mortality, has been previously published. One hundred twenty-five patients from a Swiss university hospital ICU were randomized either to CVVHDF or IHD. Out of these, 42 (CVVHDF) and 34 (IHD) were available for cost analysis. Patients' characteristics, delivered dialysis dose, duration of stay in the ICU or hospital, mortality rates, and recovery of renal function were not different between the two groups. Detailed 24-h time and material consumption protocols were available for 369 (CVVHDF) and 195 (IHD) treatment days. The mean daily duration of CVVHDF was 19.5 +/- 3.2 h/day, resulting in total expenditures of Euro 436 +/- 21 (21% for human resources and 79% for technical devices). For IHD (mean 3.0 +/- 0.4 h/treatment), the costs were lower (Euro 268 +/- 26), with a larger proportion for human resources (45%). Nursing time spent for CVVHDF was 113 +/- 50 min, and 198 +/- 63 min per IHD treatment. Total costs for RRT in ICU patients with ARF were lower when treated with IHD than with CVVHDF, and have to be taken into account for the selection of the method of RRT in ARF on the ICU.
Resumo:
The automotive industry is confronted with increasing competition, leading to higher cost pressures and the demand to optimize production processes and value chains. Here the RFID technology promises to improve a range of processes in logistics and manufacturing. Despite its promising potential in the automotive industry, RFID has not yet made a decisive step from pilots to real-life implementations in the supply chain. Building on existing models of technology adoption, we analyze RFID adoption dynamics in the automotive industry. Building on existing IOS adoption models tailored to RFID specifics and based on ten semi-structured interviews with OEMs and suppliers, we evaluate main drivers of RFID adoption in the automotive industry. Our key findings are that the use of a coercive approach by the OEM could be redundant because of the market-driven RFID adoption among many suppliers. Furthermore, suppliers implementing RFID can now gain an early mover competitive advantage by developing higher trust in their relationship with the OEM as well as accumulating unique expertise in this area.
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The print- ing technology used yields a number of specific constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technologi- cal and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The production equipment used gives rise to various technological constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technological and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.