11 resultados para Fin

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertebrate odd-skipped related genes (Osr) have an essential function during the formation of the intermediate mesoderm (IM) and the kidney structures derived from it. Here, we show that these genes are also crucial for limb bud formation in the adjacent lateral plate mesoderm (LPM). Reduction of zebrafish Osr function impairs fin development by the failure of tbx5a maintenance in the developing pectoral fin bud. Osr morphant embryos show reduced wnt2b expression, and increasing Wnt signaling in Osr morphant embryos partially rescues tbx5a expression. Thus, Osr genes control limb bud development in a non-cell-autonomous manner, probably through the activation of Wnt2b. Finally, we demonstrate that Osr genes are downstream targets of retinoic acid (RA) signaling. Therefore, Osr genes act as a relay within the genetic cascade of fin bud formation: by controlling the expression of the signaling molecule Wnt2ba in the IM they play an essential function transmitting the RA signaling originated in the somites to the LPM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three groups of Atlantic salmon were kept at a constant temperature of 4, 10 and 14 °C. The adipose fins were removed; six fish/group were sampled at 11 subsequent time points post-clipping. Samples were prepared for histopathological examination to study the course of re-epithelization. A score sheet was developed to assess the regeneration of epidermal and dermal cell types. Wounds were covered by a thin epidermal layer between 4 and 6 h post-clipping at 10 and 14 °C. In contrast, wound closure was completed between 6 and 12 h in fish held at a constant temperature of 4 °C. By 18 h post-clipping, superficial cells, cuboidal cells, prismatic basal cells and mucous cells were discernible in all temperature groups, rapidly progressing towards normal epidermal structure and thickness. Within the observation period, only minor regeneration was found in the dermal layers. A positive correlation between water temperature and healing rates was established for the epidermis. The rapid wound closure rate, epidermal normalization and the absence of inflammatory reaction signs suggest that adipose fin clipping under anaesthesia constitutes a minimally invasive method that may be used to mark large numbers of salmon presmolts without compromising fish welfare.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of zebrafish paired fins and tetrapod forelimbs and hindlimbs show striking similarities at the molecular level. In recent years, the zebrafish, Danio rerio has become a valuable model for the study of the development of vertebrate paired appendages and several large-scale mutagenesis screens have identified novel fin mutants. This review summarizes recent advances in research into zebrafish paired fin development and highlights features that are shared with and distinct from limb development in other main animal models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. OBJECTIVE To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. APPROACH & RESULTS Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. CONCLUSIONS The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.