10 resultados para Fibrin Clot Structure

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latex glycoprotein (LGP) from Synadenium grantii latex was purified by the combination of heat precipitation and gel permeation chromatography. LGP is a heat stable protein even at 80 degrees C showed a sharp single band both in SDS-PAGE as well as in native (acidic) PAGE. LGP is a monomeric protein appears as single band under reducing condition. It is a less hydrophobic protein showed sharp single peak in RP-HPLC with retention time of 13.3 m. The relative molecular mass of LGP is 34.4 kDa. CD spectrum of LGP explains less content of alpha-helix (7%), and high content of beta-pleated sheets (48%) and random coils (46%). The N-terminal sequence of LGP is D-F-P-S-D-W-Y-A-Y-E-G-Y-V-I-D-R-P-F-S. Purified LGP is a fibrinogen degrading protease hydrolyses all the three subunits in the order of Aalpha, Bbeta and gamma. The hydrolytic pattern is totally different from plasmin as well as thrombin. LGP reduces recalcification time from 165 to 30 s with citrated human plasma but did not show thrombin like as well as factor Xa-like activity. Although LGP induces procoagulant activity, it hydrolyses partially cross-linked fibrin clot. It hydrolyses all the subunits of partially cross-linked fibrin clot (alpha- chains, beta-chain and gamma-gamma dimer). LGP is a serine protease, inhibited by PMSF. Other serine protease inhibitors, aprotinin and leupeptin did not inhibit the caseinolytic activity as well as fibrinogenolytic activity. We report purification and characterization of a glycoprotein from Synadenium grantii latex with human fibrino(geno)lytic activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A major myonecrotic zinc containing metalloprotease 'malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu- Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A? followed by B subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impaired fibrin clot lysis is a key abnormality in diabetes and complement C3 is one protein identified in blood clots. This work investigates the mechanistic pathways linking C3 and hypofibrinolysis in diabetes using ex vivo/in vitro studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To cite this article: Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost 2013; 11: 234-44. Summary.  Coagulation factor (F)XIII is best known for its role in fibrin stabilization and cross-linking of antifibrinolytic proteins to the fibrin clot. From patients with congenital FXIII deficiency, it is known that FXIII also has important functions in wound healing and maintaining pregnancy. Over the last decade more and more research groups with different backgrounds have studied FXIII and have unveiled putative novel functions for FXIII. FXIII, with its unique role as a transglutaminase among the other serine protease coagulation factors, is now recognized as a multifunctional protein involved in regulatory mechanisms and construction and repair processes beyond hemostasis with possible implications in many areas of medicine. The aim of this review was to give an overview of exciting novel findings and to highlight the remarkable diversity of functions attributed to FXIII. Of course, more research into the underlying mechanisms and (patho-)physiological relevance of the many described functions of FXIII is needed. It will be exciting to observe future developments in this area and to see if and how these interesting findings may be translated into clinical practice in the future.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS Plasminogen activator inhibitor-1 (PAI-1) has been regarded as the main antifibrinolytic protein in diabetes, but recent work indicates that complement C3 (C3), an inflammatory protein, directly compromises fibrinolysis in type 1 diabetes. The aim of the current project was to investigate associations between C3 and fibrinolysis in a large cohort of individuals with type 2 diabetes. METHODS Plasma levels of C3, C-reactive protein (CRP), PAI-1 and fibrinogen were analysed by ELISA in 837 patients enrolled in the Edinburgh Type 2 Diabetes Study. Fibrin clot lysis was analysed using a validated turbidimetric assay. RESULTS Clot lysis time correlated with C3 and PAI-1 plasma levels (r = 0.24, p < 0.001 and r = 0.22, p < 0.001, respectively). In a multivariable regression model involving age, sex, BMI, C3, PAI-1, CRP and fibrinogen, and using log-transformed data as appropriate, C3 was associated with clot lysis time (regression coefficient 0.227 [95% CI 0.161, 0.292], p < 0.001), as was PAI-1 (regression coefficient 0.033 [95% CI 0.020, 0.064], p < 0.05) but not fibrinogen (regression coefficient 0.003 [95% CI -0.046, 0.051], p = 0.92) or CRP (regression coefficient 0.024 [95% CI -0.008, 0.056], p = 0.14). No correlation was demonstrated between plasma levels of C3 and PAI-1 (r = -0.03, p = 0.44), consistent with previous observations that the two proteins affect different pathways in the fibrinolytic system. CONCLUSIONS/INTERPRETATION Similarly to PAI-1, C3 plasma levels are independently associated with fibrin clot lysis in individuals with type 2 diabetes. Therefore, future studies should analyse C3 plasma levels as a surrogate marker of fibrinolysis potential in this population.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mannan-binding lectin-associated serine protease-1 (MASP-1), a protein of the complement lectin pathway, resembles thrombin in terms of structural features and substrate specificity. Due to its interplay with several coagulation factors, it has the ability to induce fibrin clot formation independent of the usual coagulation activation pathways. We have recently shown that MASP-1 activates prothrombin and identified arginine (R) 155, R271, and R393 as potential cleavage sites. FXa cleaves R320 instead of R393, and thrombin cleaves R155 and R284 in prothrombin. Here we have used three arginine-to-glutamine mutants of prothrombin, R271Q, R320Q, R393Q and the serine-to-alanine active site mutant S525A to investigate in detail the mechanism of MASP-1 mediated prothrombin activation. Prothrombin wildtype and mutants were digested with MASP-1 and the cleavage products were analysed by SDS-PAGE and N-terminal sequencing. A functional clotting assay was performed by thrombelastography. We have found that MASP-1 activates prothrombin via two simultaneous pathways, either cleaving at R271 or R393 first. Both pathways result in the formation of several active alternative thrombin species. Functional studies confirmed that both R393 and R320 are required for prothrombin activation by MASP-1, whereas R155 is not considered to be an important cleavage site in this process. In conclusion, we have described for the first time a detailed model of prothrombin activation by MASP-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explore relevant changes in unexplained intraoperative bleeding, we evaluated elements of the final steps of the coagulation cascade in 226 consecutive patients undergoing elective surgery. Patients were stratified for the occurrence of unexplained intraoperative bleeding according to predefined criteria. Twenty patients (8.8%) developed unexplained bleeding. The median intraoperative blood loss was 1350 mL (bleeders) and 400 mL (nonbleeders) (P < 0.001). Fibrinogen and Factor XIII (F. XIII) were more rapidly consumed in bleeders (P < 0.001). Soluble fibrin formation (fibrin monomer) was increased in bleeders throughout surgery (P < or = 0.014). However, F. XIII availability per unit thrombin generated was significantly decreased in bleeders before, during, and after surgery (P < or = 0.051). Computerized thrombelastography showed a parallel, significant reduction in clot firmness. We suggest that mild preexisting coagulopathy is not rare in surgical patients and probably can result in clinically relevant intraoperative bleeding. This hemostatic disorder shows impaired clot firmness, probably secondary to decreased cross-linking (due to a loss of F. XIII, both in absolute measures and per unit thrombin generated). We suggest that the application of F. XIII might be worthwhile to test in a prospective clinical trial to increase clot firmness in patients at risk for this intraoperative coagulopathy.