8 resultados para Ffw>>mag!

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Für Beherbergungsbetriebe ist E-Mail ein wichtiges Kommunikationsmedium im elektronischen Kanal geworden. Die Bedeutung von E-Mails für die Kundenkommunikation zieht die Forderung nach einem systematischen und professionellen E-Mail-Management nach sich. Derzeit tut sich die Mehrzahl der Betriebe schwer, den damit verbundenen hohen Anspruch einzulösen. Zwar werden grundlegende Anforderungen bezüglich des Antwortverhaltens mehrheitlich erfüllt, jedoch kann die Qualität der Antworten hinsichtlich Inhalt und Form in vielen Fällen nur bedingt überzeugen. Angesichts dieser Problemlage mag es überraschen, dass die Unterstützung durch Informationssysteme in diesem Zusammenhang bis jetzt keine besondere Rolle spielt. In vielen Fällen erfolgt das E-Mail-Management mithilfe des generellen E-Mail-Programms Outlook von Microsoft. Die häufig eingesetzten branchenspezifischen Property-Management-Systeme (PMS) decken die geforderten Funktionalitäten bestenfalls teilweise ab. Spezifische Informationssysteme zur Unterstützung des E-Mail-Managements - sogenannte E-Mail-Response-Management-Systeme (ERMS) - könnten bei der Entschärfung der manifesten Probleme sehr nützlich sein. Die systemtechnische Unterstützung durch ERMS wird von Praktikern jedoch mit einiger Skepsis bedacht und nur teilweise als praktisch umsetzbar und nützlich eingeschätzt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Un coup d’œil dans le rétroviseur, la conscience du temps qui passe, l’émergence de doutes, une envie de renouveau… L’entrée dans la quarantaine questionne, remue et secoue parfois jusqu’à la crise existentielle. Qu’est-ce qui se joue au mitan de la vie? Les réponses de Pasqualina Perrig-Chiello, professeure de psychologie à l'Université de Berne et cheffe de projet au Pôle de recherche national LIVES.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ground based radial velocity (RV) searches continue to discover exoplanets below Neptune mass down to Earth mass. Furthermore, ground- based transit searches now reach milli-mag photometric precision and can dis- cover Neptune size planets around bright stars. These searches will find exo- planets around bright stars anywhere on the sky, their discoveries representing prime science targets for further study due to the proximity and brightness of their host stars. A mission for transit follow-up measurements of these prime targets is currently lacking. The first ESA S-class mission CHEOPS (CHarac- terizing ExoPlanet Satellite) will fill this gap. It will perform ultra-high preci- sion photometric monitoring of selected bright target stars almost anywhere on the sky with sufficient precision to detect Earth-sized transits. It will be able to detect transits of RV-planets by photometric monitoring if the geometric con- figuration results in a transit. For Hot Neptunes discovered from the ground, CHEOPS will be able to improve the transit light curve so that the radius can be determined precisely. Because of the host stars’ brightness, high precision RV measurements will be possible for all targets. All planets observed in tran- sit by CHEOPS will be validated and their masses will be known. This will provide valuable data for constraining the mass-radius relation of exoplanets, especially in the Neptune-mass regime. During the planned 3.5 year mission, about 500 targets will be observed. There will be 20% of open time available for the community to develop new science programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context. The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3 degrees-54 degrees). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F. radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 ran, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of -0.13 +/- 0.01 in the HG system formalism and an absolute magnitude H-v(1, 1, 0) = 15.74 +/- 0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at similar to 290 rim that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk-averaged spectral slopes increasing from 11%/( 100 nm) to 16%/(100 nm) in the 1.3 degrees-54 degrees phase angle range. The geometric albedo of the comet is 6.5 +/- 0.2% at 649 nm, with local variations of up to similar to 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Small, cool planets represent the typical end-products of planetary formation. Studying the architectures of these systems, measuring planet masses and radii, and observing these planets' atmospheres during transit directly informs theories of planet assembly, migration, and evolution. Here we report the discovery of three small planets orbiting a bright (K-s = 8.6 mag) M0 dwarf using data collected as part of K2, the new ecliptic survey using the repurposed Kepler spacecraft. Stellar spectroscopy and K2 photometry indicate that the system hosts three transiting planets with radii 1.5-2.1 R-circle plus, straddling the transition region between rocky and increasingly volatile-dominated compositions. With orbital periods of 10-45 days the planets receive just 1.5-10x the flux incident on Earth, making these some of the coolest small planets known orbiting a nearby star; planet d is located near the inner edge of the system's habitable zone. The bright, low-mass star makes this system an excellent laboratory to determine the planets' masses via Doppler spectroscopy and to constrain their atmospheric compositions via transit spectroscopy. This discovery demonstrates the ability of K2 and future space-based transit searches to find many fascinating objects of interest.