19 resultados para Fertilization and nutrition of annual crops

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pollinating insects form a key component of European biodiversity, and provide a vital ecosystem service to crops and wild plants. There is growing evidence of declines in both wild and domesticated pollinators, and parallel declines in plants relying upon them. The STEP project (Status and Trends of European Pollinators, 2010-2015, www.step-project.net) is documenting critical elements in the nature and extent of these declines, examining key functional traits associated with pollination deficits, and developing a Red List for some European pollinator groups. Together these activities are laying the groundwork for future pollinator monitoring programmes. STEP is also assessing the relative importance of potential drivers of pollinator declines, including climate change, habitat loss and fragmentation, agrochemicals, pathogens, alien species, light pollution, and their interactions. We are measuring the ecological and economic impacts of declining pollinator services and floral resources, including effects on wild plant populations, crop production and human nutrition. STEP is reviewing existing and potential mitigation options, and providing novel tests of their effectiveness across Europe. Our work is building upon existing and newly developed datasets and models, complemented by spatially-replicated campaigns of field research to fill gaps in current knowledge. Findings are being integrated into a policy-relevant framework to create evidence-based decision support tools. STEP is establishing communication links to a wide range of stakeholders across Europe and beyond, including policy makers, beekeepers, farmers, academics and the general public. Taken together, the STEP research programme aims to improve our understanding of the nature, causes, consequences and potential mitigation of declines in pollination services at local, national, continental and global scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution measurements of chemical impurities and methane concentrations in Greenland ice core samples from the early glacial period allow the extension of annual-layer counted chronologies and the improvement of gas age-ice age difference (Δage) essential to the synchronization of ice core records. We report high-resolution measurements of a 50 m section of the NorthGRIP ice core and corresponding annual layer thicknesses in order to constrain the duration of the Greenland Stadial 22 (GS-22) between Greenland Interstadials (GIs) 21 and 22, for which inconsistent durations and ages have been reported from Greenland and Antarctic ice core records as well as European speleothems. Depending on the chronology used, GS-22 occurred between approximately 89 (end of GI-22) and 83 kyr b2k (onset of GI-21). From annual layer counting, we find that GS-22 lasted between 2696 and 3092 years and was followed by a GI-21 pre-cursor event lasting between 331 and 369 yr. Our layer-based counting agrees with the duration of stadial 22 as determined from the NALPS speleothem record (3250 ± 526 yr) but not with that of the GICC05modelext chronology (2620 yr) or an alternative chronology based on gas-marker synchronization to EPICA Dronning Maud Land ice core. These results show that GICC05modelext overestimates accumulation and/or underestimates thinning in this early part of the last glacial period. We also revise the possible ranges of NorthGRIP Δdepth (5.49 to 5.85 m) and Δage (498 to 601 yr) at the warming onset of GI-21 as well as the Δage range at the onset of the GI-21 precursor warming (523 to 654 yr), observing that temperature (represented by the δ15N proxy) increases before CH4 concentration by no more than a few decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: We have previously reported on measuring macular pigment density (MPD) with a scanning laser ophthalmoscope (HRA, Heidelberg Engineering, Heidelberg, Germany). This study war undertaken to evaluate the variation of MPD over a period of 1 year in healthy subjects. METHOD: We used autofluorescence images recorded with a HRA to evaluate MPD with a 2 degrees circle centered on the fovea. Healthy subjects were included in the study and MPD measurements were repeated every 2 months over a period of 1 year. RESULTS: We included a total of 30 healthy subjects aged 19-34 years (mean: 23+/-2 years). Mean MPD at time point 1 was 0.215+/-0.056 density units (DU), at time point 2 0.235+/-0.051 DU, at time point 3 0.218+/-0.055 DU, at time point 4 0.228+/-0.057 DU, at time point 5 0.225+/-0.053 DU, and at time point 6 0.203+/-0.050 DU. The statistical analysis revealed no significant variation of MPD over the follow-up period of 1 year. CONCLUSION: This study demonstrates that MPD shows no variation over a period of 1 year in healthy subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many environments land use intensification is likely to result in a decrease in species richness and in an increase in eutrophication. Although the importance of both factors for higher trophic levels such as insect herbivores is well documented, their impact has rarely been studied in combination. Herbivorous insects have a strong impact on the functioning of ecosystems and it is therefore important to understand how they are affected by eutrophication in high or low diversity environments. We used a grassland biodiversity experiment to investigate the combined effect of fertilization and plant diversity loss on the fitness of the generalist grasshopper Chorthippus parallelus by rearing grasshopper nymphs for four weeks in cages on unfertilized or fertilized (NPK) subplots across a species richness gradient from 1 to 60 plant species. Survival, the number of oothecae, body mass and the number of hatchlings were measured separately for each cage. Plant diversity had no effect on any of the grasshopper fitness measures, neither in unfertilized nor in fertilized plots. NPK-fertilization reduced grasshopper survival but increased body mass of males and reproductive success of the surviving females. Fertilization effects were not mediated by plant community structure, productivity or composition, suggesting that higher food plant quality was one of the main drivers. There was no interaction between plant diversity and fertilization on any of the measures. In conclusion, an increase in eutrophication, in both species-rich and species-poor grasslands, could lead to higher reproductive success and therefore higher abundances of herbivorous insects including insect pests, with fertilization effects dominating plant diversity effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of montane and subalpine hay meadow plant and arthropod communities to the application of liquid manure and aerial irrigation – two novel, rapidly spreading management practices – remains poorly understood, which hampers the formulation of best practice management recommendations for both hay production and biodiversity preservation. In these nutrient-poor mountain grasslands, a moderate management regime could enhance overall conditions for biodiversity. This study experimentally assessed, at the site scale, among low-input montane and subalpine meadows, the short-term effects (1 year) of a moderate intensification (slurry fertilization: 26.7–53.3 kg N·ha−1·year−1; irrigation with sprinklers: 20 mm·week−1; singly or combined together) on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass in the inner European Alps (Valais, SW Switzerland). Results show that (1) montane and subalpine hay meadow ecological communities respond very rapidly to an intensification of management practices; (2) on a short-term basis, a moderate intensification of very low-input hay meadows has positive effects on plant species richness, vegetation structure, hay production, and arthropod abundance and biomass; (3) vegetation structure is likely to be the key factor limiting arthropod abundance and biomass. Our ongoing experiments will in the longer term identify which level of management intensity achieves an optimal balance between biodiversity and hay production.