18 resultados para Ferroelectric memories

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various studies suggest that non-rapid eye movement (NREM) sleep, especially slow-wave sleep (SWS), is vital to the consolidation of declarative memories. However, sleep stage 2 (S2), which is the other NREM sleep stage besides SWS, has gained only little attention. The current study investigated whether S2 during an afternoon nap contributes to the consolidation of declarative memories. Participants learned associations between faces and cities prior to a brief nap. A cued recall test was administered before and following the nap. Spindle, delta and slow oscillation activity was recorded during S2 in the nap following learning and in a control nap. Increases in spindle activity, delta activity, and slow oscillation activity in S2 in the nap following learning compared to the control nap were associated with enhanced retention of face-city associations. Furthermore, spindles tended to occur more frequently during up-states than down-states within slow oscillations during S2 following learning versus S2 of the control nap. These findings suggest that spindles, delta waves, and slow oscillations might promote memory consolidation not only during SWS, as shown earlier, but also during S2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments suggest that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus - the key structure thought to support conscious relational (episodic) memory. Given that the hippocampus subserves both conscious and unconscious relational encoding/retrieval, we expected the hippocampus to be place of unconscious-conscious interactions. This hypothesis was tested in an fMRI experiment on the interaction between the unconscious retrieval of face-associated occupations and the subsequent conscious retrieval of celebrities’ occupations. For subliminal encoding, masked combinations of an unfamiliar face and a written occupation (“actor” or “politician”) were subliminally presented. At test, we presented the former subliminal faces again, without occupations and masks, as conscious retrieval cues. We hypothesized that faces would trigger the unconscious reactivation of the associated occupation - actor or politician -, which in turn would facilitate or inhibit the subsequent conscious recollection of a celebrity’s occupation. Following the presentation of a former subliminal face, we presented the portrait of a celebrity that participants were required to sort according to “actor” or “politician”. Depending on whether the triggered unconscious occupation was congruent or incongruent with the celebrity’s occupation, we expected an expedited or retarded conscious retrieval process as reflected in reaction times. Conscious retrieval was expedited in the congruent condition, but there was no effect in the incongruent condition. fMRI data collected during subliminal relational encoding confirmed that the hippocampus was interacting with neocortical semantic storage sites. fMRI data collected at test indicated that the facilitated conscious retrieval of celebrity-associated occupations was related to deactivations in this same network spanning hippocampus and neocortical semantic storage sites. Hence, unconscious retrieval likely preactivated this network, which allowed for a sparing recruitment of additional neural resources to assist conscious retrieval. This finding supports the notion that consciously and unconsciously acquired relational memories are stored in a single, cohesive hippocampal-neocortical memory space.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that humans can form and later retrieve new semantic relations unconsciously by way of hippocampus-the key structure also recruited for conscious relational (episodic) memory. If the hippocampus subserves both conscious and unconscious relational encoding/retrieval, one would expect the hippocampus to be place of unconscious-conscious interactions during memory retrieval. We tested this hypothesis in an fMRI experiment probing the interaction between the unconscious and conscious retrieval of face-associated information. For the establishment of unconscious relational memories, we presented subliminal (masked) combinations of unfamiliar faces and written occupations ("actor" or "politician"). At test, we presented the former subliminal faces, but now supraliminally, as cues for the reactivation of the unconsciously associated occupations. We hypothesized that unconscious reactivation of the associated occupation-actor or politician-would facilitate or inhibit the subsequent conscious retrieval of a celebrity's occupation, which was also actor or politician. Depending on whether the reactivated unconscious occupation was congruent or incongruent to the celebrity's occupation, we expected either quicker or delayed conscious retrieval process. Conscious retrieval was quicker in the congruent relative to a neutral baseline condition but not delayed in the incongruent condition. fMRI data collected during subliminal face-occupation encoding confirmed previous evidence that the hippocampus was interacting with neocortical storage sites of semantic knowledge to support relational encoding. fMRI data collected at test revealed that the facilitated conscious retrieval was paralleled by deactivations in the hippocampus and neocortical storage sites of semantic knowledge. We assume that the unconscious reactivation has pre-activated overlapping relational representations in the hippocampus reducing the neural effort for conscious retrieval. This finding supports the notion of synergistic interactions between conscious and unconscious relational memories in a common, cohesive hippocampal-neocortical memory space.