2 resultados para Fermionic integrable models
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We calculate the all-loop anomalous dimensions of current operators in λ-deformed σ-models. For the isotropic integrable deformation and for a semi-simple group G we compute the anomalous dimensions using two different methods. In the first we use the all-loop effective action and in the second we employ perturbation theory along with the Callan–Symanzik equation and in conjunction with a duality-type symmetry shared by these models. Furthermore, using CFT techniques we compute the all-loop anomalous dimension of bilinear currents for the isotropic deformation case and a general G . Finally we work out the anomalous dimension matrix for the cases of anisotropic SU(2) and the two couplings, corresponding to the symmetric coset G/H and a subgroup H, splitting of a group G.
Resumo:
We construct two-parameter families of integrable λ -deformations of two-dimensional field theories. These interpolate between a CFT (a WZW/gauged WZW model) and the non-Abelian T-dual of a principal chiral model on a group/symmetric coset space. In examples based on the SU(2) WZW model and the SU(2)/U(1) exact coset CFT, we show that these deformations are related to bi-Yang–Baxter generalisations of η-deformations via Poisson–Lie T-duality and analytic continuation. We illustrate the quantum behaviour of our models under RG flow. As a byproduct we demonstrate that the bi-Yang–Baxter σ-model for a general group is one-loop renormalisable.