27 resultados para Faults (Geology)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This manuscript deals with the adaptation of quartz-microfabrics to changing physical deformation conditions, and discusses their preservation potential during subsequent retrograde deformation. Using microstructural analysis, a sequence of recrystallization processes in quartz, ranging from Grain-Boundary Migration Recrystallization (GBM) over Subgrain-Rotation Recrystallization (SGR) to Bulging Nucleation (BLG) is detected for the Simplon fault zone (SFZ) from the low strain rim towards the internal high strain part of the large-scale shear zone. Based on: (i) the retrograde cooling path; (ii) estimates of deformation temperatures; and (iii) spatial variation of dynamic recrystallization processes and different microstructural characteristics, continuous strain localization with decreasing temperature is inferred. In contrast to the recrystallization microstructures, crystallographic preferred orientations (CPO) have a longer memory. CPO patterns indicative of prism and rhomb glide systems in mylonitic quartz veins, overprinted at low temperatures (�400 �C), suggest inheritance of a high-temperature deformation. In this way, microstructural, textural and geochemical analyses provide information for several million years of the deformation history. The reasons for such incomplete resetting of the rock texture is that strain localization is caused by change in effective viscosity contrasts related to temporal large- and small-scale temperature changes during the evolution of such a long-lived shear zone. The spatially resolved, quantitative investigation of quartz microfabrics and associated recrystallization processes therefore provide great potential for an improved understanding of the geodynamics of large-scale shear zones.
Resumo:
The neoformation of chlorite and K-white mica in fault rocks from two main faults of the central Catalan Coastal Ranges, the Vallès and the Hospital faults, has allowed us to constrain the P–T conditions during fault evolution using thermodynamic modeling. Crystallization of M1 and M2 muscovite and microcline occured as result of deuteric alteration during the exhumation of the pluton (290 °C > T > 370 °C) in the Permian. After that, three tectonic events have been distinguished. The first tectonic event, attributed to the Mesozoic rifting, is characterized by precipitation of M3 and M4 phengite together with chlorite and calcite C1 at temperatures between 190 and 310 °C. The second tectonic event attributed to the Paleogene compression has only been identified in the Hospital fault with precipitation of low-temperature calcite C2. The shortcut produced during inversion of the Vallès fault was probably the responsible for the lack of neoformed minerals within this fault. Finally, the third tectonic event, which is related to the Neogene extension, is characterized in the Vallès fault by a new generation of chlorite, associated with calcite C4 and laumontite, formed at temperatures between 125 and 190 °C in the absence of K-white mica. Differently, the Hospital fault is characterized by the precipitation of calcite C3 during the syn-rift stage at temperatures around 150 °C and by low-temperature fluids precipitating calcites C5, C6 and PC1 during the post-rift stage. During the two extensional events (Mesozoic and Neogene), faults acted as conduits for hot fluids producing anomalous high geothermal gradients (50 °C/km minimum).
Resumo:
[1] The evolution of the rift shoulder and the sedimentary sequence of the Morondava basin in western Madagascar was mainly influenced by a Permo-Triassic continental failed rift (Karroo rift), and the early Jurassic separation of Madagascar from Africa. Karroo deposits are restricted to a narrow corridor along the basement-basin contact and parts of this contact feature a steep escarpment. Here, apatite fission track (AFT) analysis of a series of both basement and sediment samples across the escarpment reveals the low-temperature evolution of the exhuming Precambrian basement in the rift basin shoulder and the associated thermal evolution of the sedimentary succession. Seven basement and four Karroo sediment samples yield apparent AFT ages between ∼330 and ∼215 Ma and ∼260 and ∼95 Ma, respectively. Partially annealed fission tracks and thermal modeling indicate post-depositional thermal overprinting of both basement and Karroo sediment. Rocks presently exposed in the rift shoulder indicate temperatures of >60°C associated with this reheating whereby the westernmost sample in the sedimentary plain experienced almost complete resetting of the detrital apatite grains at temperatures of about ∼90–100°C. The younging of AFT ages westward indicates activity of faults, re-activating inherited Precambrian structures during Karroo sedimentation. Furthermore, our data suggest onset of final cooling/exhumation linked to (1) the end of Madagascar's drift southward relative to Africa during the Early Cretaceous, (2) activity of the Marion hot spot and associated Late Cretaceous break-up between Madagascar and India, and (3) the collision of India with Eurasia and subsequent re-organization of spreading systems in the Indian Ocean.
Resumo:
The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.
Resumo:
Formation pathways of ancient siliceous iron formations and related Fe isotopic fractionation are still not completely understood. Investigating these processes, however, is difficult as good modern analogues to ancient iron formations are scarce. Modern siliceous Fe oxyhydroxide deposits are found at marine hydrothermal vent sites, where they precipitate from diffuse, low temperature fluids along faults and fissures on the seafloor. These deposits exhibit textural and chemical features that are similar to some Phanerozoic iron formations, raising the question as to whether the latter could have precipitated from diffuse hydrothermal fluids rather than from hydrothermal plumes. In this study, we present the first data on modern Fe oxyhydroxide deposits from the Jan Mayen hydrothermal vent fields, Norwegian-Greenland Sea. The samples we investigated exhibited very low δ56Fe values between -2.09‰ and -0.66‰. Due to various degrees of partial oxidation, the Fe oxyhydroxides are with one exception either indistinguishable from low-temperature hydrothermal fluids from which they precipitated (-1.84‰ and -1.53‰ in δ56Fe) or are enriched in the heavy Fe isotopes. In addition, we investigated Fe isotope variations in Ordovician jasper beds from the Løkken ophiolite complex, Norway, which have been interpreted to represent diagenetic products of siliceous ferrihydrite precursors that precipitated in a hydrothermal plume, in order to compare different formation pathways of Fe oxyhydroxide deposits. Iron isotopes in the jasper samples have higher δ56Fe values (-0.38‰ to +0.89‰) relative to modern, high-temperature hydrothermal vent fluids (ca. -0.40‰ on average), supporting the fallout model. However, formation of the Ordovician jaspers by diffuse venting cannot be excluded, due to lithological differences of the subsurface of the two investigated vent systems. Our study shows that reliable interpretation of Fe isotope variations in modern and ancient marine Fe oxyhydroxide deposits depends on comprehensive knowledge of the geological context. Furthermore, we demonstrate that very negative δ56Fe values in such samples might not be the result of microbial dissimilatory iron reduction, but could be caused instead by inorganic reactions.
Resumo:
Central Switzerland lies tectonically in an intraplate area and recurrence rates of strong earthquakes exceed the time span covered by historic chronicles. However, many lakes are present in the area that act as natural seismographs: their continuous, datable and high-resolution sediment succession allows extension of the earthquake catalogue to pre-historic times. This study reviews and compiles available data sets and results from more than 10 years of lacustrine palaeoseismological research in lakes of northern and Central Switzerland. The concept of using lacustrine mass-movement event stratigraphy to identify palaeo-earthquakes is showcased by presenting new data and results from Lake Zurich. The Late Glacial to Holocene mass-movement units in this lake document a complex history of varying tectonic and environmental impacts. Results include sedimentary evidence of three major and three minor, simultaneously triggered basin-wide lateral slope failure events interpreted as the fingerprints of palaeoseismic activity. A refined earthquake catalogue, which includes results from previous lake studies, reveals a non-uniform temporal distribution of earthquakes in northern and Central Switzerland. A higher frequency of earthquakes in the Late Glacial and Late Holocene period documents two different phases of neotectonic activity; they are interpreted to be related to isostatic post-glacial rebound and relatively recent (re-)activation of seismogenic zones, respectively. Magnitudes and epicentre reconstructions for the largest identified earthquakes provide evidence for two possible earthquake sources: (i) a source area in the region of the Alpine or Sub-Alpine Front due to release of accumulated north-west/south-east compressional stress related to an active basal thrust beneath the Aar massif; and (ii) a source area beneath the Alpine foreland due to reactivation of deep-seated strike-slip faults. Such activity has been repeatedly observed instrumentally, for example, during the most recent magnitude 4.2 and 3.5 earthquakes of February 2012, near Zug. The combined lacustrine record from northern and Central Switzerland indicates that at least one of these potential sources has been capable of producing magnitude 6.2 to 6.7 events in the past.
Resumo:
The bedrock topography beneath the Quaternary cover provides an important archive for the identification of erosional processes during past glaciations. Here, we combined stratigraphic investigations of more than 40,000 boreholes with published data to generate a bedrock topography model for the entire plateau north of the Swiss Alps including the valleys within the mountain belt. We compared the bedrock map with data about the pattern of the erosional resistance of Alpine rocks to identify the controls of the lithologic architecture on the location of overdeepenings. We additionally used the bedrock topography map as a basis to calculate the erosional potential of the Alpine glaciers, which was related to the thickness of the LGM ice. We used these calculations to interpret how glaciers, with support by subglacial meltwater under pressure, might have shaped the bedrock topography of the Alps. We found that the erosional resistance of the bedrock lithology mainly explains where overdeepenings in the Alpine valleys and the plateau occur. In particular, in the Alpine valleys, the locations of overdeepenings largely overlap with areas where the underlying bedrock has a low erosional resistance, or where it was shattered by faults. We also found that the assignment of two end-member scenarios of erosion, related to glacial abrasion/plucking in the Alpine valleys, and dissection by subglacial meltwater in the plateau, may be adequate to explain the pattern of overdeepenings in the Alpine realm. This most likely points to the topographic controls on glacial scouring. In the Alps, the flow of LGM and previous glaciers were constrained by valley flanks, while ice flow was mostly divergent on the plateau where valley borders are absent. We suggest that these differences in landscape conditioning might have contributed to the contrasts in the formation of overdeepenings in the Alpine valleys and the plateau.