15 resultados para Far infrared region

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water vapour, despite being a minor constituent in the Martian atmosphere with its precipitable amount of less than 70 pr. μm, attracts considerable attention in the scientific community because of its potential importance for past life on Mars. The partial pressure of water vapour is highly variable because of its seasonal condensation onto the polar caps and exchange with a subsurface reservoir. It is also known to drive photochemical processes: photolysis of water produces H, OH, HO2 and some other odd hydrogen compounds, which in turn destroy ozone. Consequently, the abundance of water vapour is anti-correlated with ozone abundance. The Herschel Space Observatory provides for the first time the possibility to retrieve vertical water profiles in the Martian atmosphere. Herschel will contribute to this topic with its guaranteed-time key project called "Water and related chemistry in the solar system". Observations of Mars by Heterodyne Instrument for the Far Infrared (HIFI) and Photodetector Array Camera and Spectrometer (PACS) onboard Herschel are planned in the frame of the programme. HIFI with its high spectral resolution enables accurate observations of vertically resolved H2O and temperature profiles in the Martian atmosphere. Unlike HIFI, PACS is not capable of resolving the line-shape of molecular lines. However, our present study of PACS observations for the Martian atmosphere shows that the vertical sensitivity of the PACS observations can be improved by using multiple-line observations with different line opacities. We have investigated the possibility of retrieving vertical profiles of temperature and molecular abundances of minor species including H2O in the Martian atmosphere using PACS. In this paper, we report that PACS is able to provide water vapour vertical profiles for the Martian atmosphere and we present the expected spectra for future PACS observations. We also show that the spectral resolution does not allow the retrieval of several studied minor species, such as H2O2, HCl, NO, SO2, etc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work introduces two novel approaches for the application of luminescence dating techniques to Quaternary volcanic eruptions: crystalline xenoliths from lava flows are demonstrated to be basically suitable for luminescence dating, and a set of phreatic explosion deposits from the Late Quaternary Vakinankaratra volcanic field in central Madagascar is successfully dated with infrared stimulated luminescence (IRSL). Using a numerical model approach and experimental verification, the potential for thermal resetting of luminescence signals of xenoliths in lava flows is demonstrated. As microdosimetry is an important aspect when using sample material extracted from crystalline whole rocks, autoradiography using image plates is introduced to the field of luminescence dating as a method for detection and assessment of spatially resolved radiation inhomogeneities. Determinations of fading rates of feldspar samples have been observed to result in aberrant g-values if the pause between preheat and measurement in the delayed measurements was kept short. A systematic investigation reveals that the phenomenon is caused by the presence of three signal components with differing individual fading behaviour. As this is restricted to short pauses, it is possible to determine a minimal required delay between preheating and measurement after which the aberrant behaviour disappears. This is applied in the measuring of 12 samples from phreatic explosion deposits from the Antsirabe – Betafo region in the Late Quaternary Vakinankaratra volcanic field. The samples were taken from stratigraphically correlatable sections and appear to represent at least three phreatic events, one of which created the Lac Andraikiba maar near Antsirabe. The obtained ages indicate that the eruptive activity in the region started in the Late Pleistocene between 113.9 and 99.6 ka. A second layer in the Betafo area is dated at approximately 73 ka and the Lac Andraikiba deposits give an age between 63.9 and 50.7 ka. The youngest phreatic layer is dated between 33.7 and 20.7 ka. These ages are the first recorded direct ages of such volcanic deposits, as well as the first and only direct ages for the Late Quaternary volcanism in the Vakinankaratra volcanic field. This illustrates the huge potential of this new method for volcanology and geochronology, as it enables direct numerical dating of a type of volcanic deposit which has not been successfully directly dated by any other method so far.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrared thermography (IRT) was used to detect digital dermatitis (DD) prior to routine claw trimming. A total of 1192 IRT observations were collected from 149 cows on eight farms. All cows were housed in tie-stalls. The maximal surface temperatures of the coronary band (CB) region and skin (S) of the fore and rear feet (mean value of the maximal surface temperatures of both digits for each foot separately, CBmax and Smax) were assessed. Grouping was performed at the foot level (presence of DD, n=99; absence, n=304), or at the cow level (all four feet healthy, n=24) or where there was at least one DD lesion on the rear feet, n=37). For individual cows (n=61), IRT temperature difference was determined by subtracting the mean sum of CBmax and Smax of the rear feet from that of the fore feet. Feet with DD had higher CBmax and Smax (P<0.001) than healthy feet. Smax was significantly higher in feet with infectious DD lesions (M-stage: M2+M4; n=15) than in those with non-infectious M-lesions (M1+M3; n=84) (P=0.03), but this was not the case for CBmax (P=0.12). At the cow level, an optimal cut-off value for detecting DD of 0.99°C (IRT temperature difference between rear and front feet) yielded a sensitivity of 89.1% and a specificity of 66.6%. The results indicate that IRT may be a useful non-invasive diagnostic tool to screen for the presence of DD in dairy cows by measuring CBmax and Smax.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. A number of studies have shown that Fourier transform infrared spectroscopy (FTIRS) can be applied to quantitatively assess lacustrine sediment constituents. In this study, we developed calibration models based on FTIRS for the quantitative determination of biogenic silica (BSi; n = 420; gradient: 0.9–56.5 %), total organic carbon (TOC; n = 309; gradient: 0–2.9 %), and total inorganic carbon (TIC; n = 152; gradient: 0–0.4 %) in a 318 m-long sediment record with a basal age of 3.6 million years from Lake El’gygytgyn, Far East Russian Arctic. The developed partial least squares (PLS) regression models yield high cross-validated (CV) R2 CV = 0.86–0.91 and low root mean square error of crossvalidation (RMSECV) (3.1–7.0% of the gradient for the different properties). By applying these models to 6771 samples from the entire sediment record, we obtained detailed insight into bioproductivity variations in Lake El’gygytgyn throughout the middle to late Pliocene and Quaternary. High accumulation rates of BSi indicate a productivity maximum during the middle Pliocene (3.6–3.3 Ma), followed by gradually decreasing rates during the late Pliocene and Quaternary. The average BSi accumulation during the middle Pliocene was �3 times higher than maximum accumulation rates during the past 1.5 million years. The indicated progressive deterioration of environmental and climatic conditions in the Siberian Arctic starting at ca. 3.3 Ma is consistent with the first occurrence of glacial periods and the finally complete establishment of glacial–interglacial cycles during the Quaternary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greater Himalayan region demarcates two of the most prominent linguistic phyla in Asia: Tibeto-Burman and Indo-European. Previous genetic surveys, mainly using Y-chromosome polymorphisms and/or mitochondrial DNA polymorphisms suggested a substantially reduced geneflow between populations belonging to these two phyla. These studies, however, have mainly focussed on populations residing far to the north and/or south of this mountain range, and have not been able to study geneflow patterns within the greater Himalayan region itself. We now report a detailed, linguistically informed, genetic survey of Tibeto-Burman and Indo-European speakers from the Himalayan countries Nepal and Bhutan based on autosomal microsatellite markers and compare these populations with surrounding regions. The genetic differentiation between populations within the Himalayas seems to be much higher than between populations in the neighbouring countries. We also observe a remarkable genetic differentiation between the Tibeto-Burman speaking populations on the one hand and Indo-European speaking populations on the other, suggesting that language and geography have played an equally large role in defining the genetic composition of present-day populations within the Himalayas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectra in the visible (VIS) and infrared (IR) region contain a wide variety of information about inorganic and organic substances in sediments. The information from the spectra enables a wide array of applications that allow quantitative, semiquantitative, and qualitative characterization of sediment. Due to the fact that instrument/experimental setups are simple, rapid, and cost-saving and that only small sample quantities are required, the technique has become valuable in paleolimnological and Quaternary science. This article summarizes the theoretical background of VIS and IR spectroscopy, explains the analytical process, introduces statistical tools used for interpretation of spectra, and provides examples of applications in Quaternary science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sustainable water resources management depends on sound information about the impacts of climate change. This information is, however, not easily derived because natural runoff variability interferes with the climate change signal. This study presents a procedure that leads to robust estimates of magnitude and Time Of Emergence (TOE) of climate-induced hydrological change that also account for the natural variability contained in the time series. Firstly, natural variability of 189 mesoscale catchments in Switzerland is sampled for 10 ENSEMBLES scenarios for the control (1984–2005) and two scenario periods (near future: 2025–2046, far future: 2074–2095) applying a bootstrap procedure. Then, the sampling distributions of mean monthly runoff are tested for significant differences with the Wilcoxon-Mann–Whitney test and for effect size with Cliff’s delta d. Finally, the TOE of a climate change induced hydrological change is determined when at least eight out of the ten hydrological projections significantly differ from natural variability. The results show that the TOE occurs in the near future period except for high-elevated catchments in late summer. The significant hydrological projections in the near future correspond, however, to only minor runoff changes. In the far future, hydrological change is statistically significant and runoff changes are substantial. Temperature change is the most important factor determining hydrological change in this mountainous region. Therefore, hydrological change depends strongly on a catchment’s mean elevation. Considering that the hydrological changes are predicted to be robust in the near future highlights the importance of accounting for these changes in water resources planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clubs and societies offer a space for fun and games, sports, and cultural activities. But they do far more than that. They are important places of social identity building. By bringing different people together, they foster social cohesion and integration. And last but not least, they contribute to democratic culture. What kinds of associations exist in and around the Swiss Alps Jungfrau-Aletsch UNESCO World Heritage site, and what do they do?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Martian surface is covered by a fine-layer of oxidized dust responsible for its red color in the visible spectral range (Bibring et al., 2006; Morris et al., 2006). In the near infrared, the strongest spectral feature is located between 2.6 and 3.6 mu m and is ubiquitously observed on the planet (Jouglet et al., 2007; Milliken et al., 2007). Although this absorption has been studied for many decades, its exact attribution and its geological and climatic implications remain debated. We present new lines of evidence from laboratory experiments, orbital and landed missions data, and characterization of the unique Martian meteorite NWA 7533, all converging toward the prominent role of hydroxylated ferric minerals. Martian breccias (so-called "Black Beauty" meteorite NWA7034 and its paired stones NWA7533 and NWA 7455) are unique pieces of the Martian surface that display abundant evidence of aqueous alteration that occurred on their parent planet (Agee et al., 2013). These dark stones are also unique in the fact that they arose from a near surface level in the Noachian southern hemisphere (Humayun et al., 2013). We used IR spectroscopy, Fe-XANES and petrography to identify the mineral hosts of hydrogen in NWA 7533 and compare them with observations of the Martian surface and results of laboratory experiments. The spectrum of NWA 7533 does not show mafic mineral absorptions, making its definite identification difficult through NIR remote sensing mapping. However, its spectra are virtually consistent with a large fraction of the Martian highlands. Abundant NWA 7034/7533 (and paired samples) lithologies might abound on Mars and might play a role in the dust production mechanism. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. On 12 November 2014, the European mission Rosetta delivered the Philae lander on the nucleus of comet 67P /Churyumov-Gerasimenko (67P). After the first touchdown, the lander bounced three times before finally landing at a site named Abydos. Aims. We provide a morphologically detailed analysis of the Abydos landing site to support Philae's measurements and to give context for the interpretation of the images coming from the Comet Infrared and Visible Analyser (CIVA) camera system onboard the lander. Methods. We used images acquired by the OSIRIS Narrow Angle Camera (NAC) on 6 December 2014 to perform the analysis of the Abydos landing site, which provided the geomorphological map, the gravitational slope map, the size-frequency distribution of the boulders. We also computed the albedo and spectral reddening maps. Results. The morphological analysis of the region could suggest that Philae is located on a primordial terrain. The Abydos site is surrounded by two layered and fractured outcrops and presents a 0.02 km(2) talus deposit rich in boulders. The boulder size frequency distribution gives a cumulative power-law index of 4.0 + 0.3/0.4, which is correlated with gravitational events triggered by sublimation and /or thermal fracturing causing regressive erosion. The average value of the albedo is 5.8% at lambda(1) = 480.7 nm and 7.4% at lambda(2) = 649.2 nm, which is similar to the global albedos derived by OSIRIS and CIVA, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.