24 resultados para Fair Work (Transitional Provisions and Consequential Amendments) Regulations 2009

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: Work-related stress and burnout among physicians are of increasing relevance. The aim of this study was to investigate work-related behavior and experience patterns and predictors of mental health of physicians working in medical practice in Germany. Methods: We surveyed a stratified, random sample of 900 physicians from different specialties. The questionnaire included the standardized instruments Work-related Behavior and Experience Pattern (AVEM) and the Short Form-12 Health Survey (SF-12). Results: Only one third of physicians reported high or very high general satisfaction with their job, but 64% would choose to study medicine again. Only 18% of physicians presented a healthy behavior and experience pattern. Almost 40% presented a pattern of reduced motivation to work, 21% were at risk of overexertion, and 22% at risk for burnout. Willingness to study medicine again, fulfilled job expectations, professional years, marital status, and behavior patterns were significant predictors of mental health and accounted for 35.6% of the variance in mental health scores. Job-related perceptions also had a significant effect on burnout. Conclusions: The strong influence of work-related perceptions suggests a need for realistic expectation management in medical education, as well as support in stress management and coping strategies during medical training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study tests whether cognitive failures mediate effects of work-related time pressure and time control on commuting accidents and near-accidents. Participants were 83 employees (56% female) who each commuted between their regular place of residence and place of work using vehicles. The Workplace Cognitive Failure Scale (WCFS) asked for the frequency of failure in memory function, failure in attention regulation, and failure in action execution. Time pressure and time control at work were assessed by the Instrument for Stress Oriented Task Analysis (ISTA). Commuting accidents in the last 12 months were reported by 10% of participants, and half of the sample reported commuting near-accidents in the last 4 weeks. Cognitive failure significantly mediated the influence of time pressure at work on near-accidents even when age, gender, neuroticism, conscientiousness, commuting duration, commuting distance, and time pressure during commuting were controlled for. Time control was negatively related to cognitive failure and neuroticism, but no association with commuting accidents or near-accidents was found. Time pressure at work is likely to increase cognitive load. Time pressure might, therefore, increase cognitive failures during work and also during commuting. Hence, time pressure at work can decrease commuting safety. The result suggests a reduction of time pressure at work should improve commuting safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Measurements of Humidity in the Atmosphere and Validation Experiment (MOHAVE) 2009 campaign took place on 11–27 October 2009 at the JPL Table Mountain Facility in California (TMF). The main objectives of the campaign were to (1) validate the water vapor measurements of several instruments, including, three Raman lidars, two microwave radiometers, two Fourier-Transform spectrometers, and two GPS receivers (column water), (2) cover water vapor measurements from the ground to the mesopause without gaps, and (3) study upper tropospheric humidity variability at timescales varying from a few minutes to several days. A total of 58 radiosondes and 20 Frost-Point hygrometer sondes were launched. Two types of radiosondes were used during the campaign. Non negligible differences in the readings between the two radiosonde types used (Vaisala RS92 and InterMet iMet-1) made a small, but measurable impact on the derivation of water vapor mixing ratio by the Frost-Point hygrometers. As observed in previous campaigns, the RS92 humidity measurements remained within 5% of the Frost-point in the lower and mid-troposphere, but were too dry in the upper troposphere. Over 270 h of water vapor measurements from three Raman lidars (JPL and GSFC) were compared to RS92, CFH, and NOAA-FPH. The JPL lidar profiles reached 20 km when integrated all night, and 15 km when integrated for 1 h. Excellent agreement between this lidar and the frost-point hygrometers was found throughout the measurement range, with only a 3% (0.3 ppmv) mean wet bias for the lidar in the upper troposphere and lower stratosphere (UTLS). The other two lidars provided satisfactory results in the lower and mid-troposphere (2–5% wet bias over the range 3–10 km), but suffered from contamination by fluorescence (wet bias ranging from 5 to 50% between 10 km and 15 km), preventing their use as an independent measurement in the UTLS. The comparison between all available stratospheric sounders allowed to identify only the largest biases, in particular a 10% dry bias of the Water Vapor Millimeter-wave Spectrometer compared to the Aura-Microwave Limb Sounder. No other large, or at least statistically significant, biases could be observed. Total Precipitable Water (TPW) measurements from six different co-located instruments were available. Several retrieval groups provided their own TPW retrievals, resulting in the comparison of 10 different datasets. Agreement within 7% (0.7 mm) was found between all datasets. Such good agreement illustrates the maturity of these measurements and raises confidence levels for their use as an alternate or complementary source of calibration for the Raman lidars. Tropospheric and stratospheric ozone and temperature measurements were also available during the campaign. The water vapor and ozone lidar measurements, together with the advected potential vorticity results from the high-resolution transport model MIMOSA, allowed the identification and study of a deep stratospheric intrusion over TMF. These observations demonstrated the lidar strong potential for future long-term monitoring of water vapor in the UTLS.