34 resultados para Factor-kappa-b

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pregnancy is accompanied by a mild systemic inflammatory response, which includes the activation of monocytes circulating in maternal blood. This response is exaggerated in preeclampsia, a placental-dependent disorder specific to human pregnancies. We and others showed that placental syncytiotrophoblast membrane microparticles (STBM) generated in vitro from normal placentas stimulated peripheral blood monocytes, which suggest a contribution of STBM to the systemic maternal inflammation. Here, we analyzed the inflammatory potential of STBM prepared from preeclamptic placentas on primary monocytes and investigated the mode of action in vitro. STBM generated in vitro by placental villous explants of normal or preeclamptic placentas were co-incubated with human peripheral blood monocytes. In some cases, inhibitors of specific cellular functions or signaling pathways were used. The analysis of the monocytic response was performed by flow cytometry, enzyme-linked immunoassays, real-time PCR, and fluorescence microscopy. STBM derived from preeclamptic placentas up-regulated the cell surface expression of CD54, and stimulated the secretion of the pro-inflammatory interleukin (IL)-6 and IL-8 in a similar, dose-dependent manner as did STBM prepared from normal placentas. STBM bound to the cell surface of monocytes, but phagocytosis was not necessary for activation. STBM-induced cytokine secretion was impaired in the presence of inhibitors of toll-like receptor (TLR) signaling or when nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation was blocked. Our results suggest that the inflammatory reaction in monocytes may be initiated by the interaction of STBM with TLRs, which in turn signal through NF-κB to mediate the transcription of genes coding for pro-inflammatory factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Severe factor XIII (FXIII) deficiency is a rare autosomal recessive coagulation disorder affecting one in two million individuals. The aim of the present study was to screen for and analyse F13B gene defects in the German population. A total of 150 patients presenting with suspected FXIII deficiency and one patient with severe (homozygous) FXIII deficiency were screened for mutations in F13A and F13B genes. Twenty-five individuals presented with detectable heterozygous mutations, 12 of them in the F13A gene and 13 of them in the F13B gene. We report on the genotype-phenotype correlations of the individuals showing defects in the F13B gene. Direct sequencing revealed 12 unique mutations including seven missense mutations (Cys5Arg, Ile81Asn, Leu116Phe, Val217Ile, Cys316Phe, Val401Glu, Pro428Ser), two splice site mutations (IVS2-1G>C, IVS3-1G>C), two insertions (c.1155_1158dupACTT, c.1959insT) and one in-frame deletion (c.471-473delATT). Two of the missense mutations (Cys5Arg, Cys316Phe) eliminated disulphide bonds (Cys5-Cys56, Cys316-Cys358). Another three missense mutations, (Leu116Phe, Val401Glu, Pro428Ser) were located proximal to other cysteine disulphide bonds, therefore indicating that the region in and around these disulphide bonds is prone to functionally relevant mutations in the FXIII-B subunit. The present study reports on a fairly common prevalence of F13B gene defects in the German population. The regions in and around the cysteine disulphide bonds in the FXIII-B protein may be regions prone to frequent mutations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear Factor kappa B (NF-κB) is a key mediator of normal immune response but contributes to aggressive cancer cell phenotypes when aberrantly activated. Here we present evidence that the Inhibitor of Growth 4 (ING4) tumor suppressor negatively regulates NF-κB in breast cancer. We surveyed primary breast tumor samples for ING4 protein expression using tissue microarrays and a newly generated antibody. We found that 34% of tumors expressed undetectable to low levels of the ING4 protein (n = 227). Tumors with low ING4 expression were frequently large in size, high grade, and lymph node positive, suggesting that down-regulation of ING4 may contribute to breast cancer progression. In the same tumor set, we found that low ING4 expression correlated with high levels of nuclear phosphorylated p65/RelA (p-p65), an activated form of NF-κB (p = 0.018). Fifty seven percent of ING4-low/p-p65-high tumors were lymph node-positive, indicating a high metastatic tendency of these tumors. Conversely, ectopic expression of ING4 inhibited p65/RelA phosphorylation in T47D and MCF7 breast cancer cells. In addition, ING4 suppressed PMA-induced cell invasion and NF-κB-target gene expression in T47D cells, indicating that ING4 inhibited NF-κB activity in breast cancer cells. Supportive of the ING4 function in the regulation of NF-κB-target gene expression, we found that ING4 expression levels inversely correlated with the expression of NF-κB-target genes in primary breast tumors by analyzing public gene expression datasets. Moreover, low ING4 expression or high expression of the gene signature composed of a subset of ING4-repressed NF-κB-target genes was associated with reduced disease-free survival in breast cancer patients. Taken together, we conclude that ING4 negatively regulates NF-κB in breast cancer. Consequently, down-regulation of ING4 leads to activation of NF-κB, contributing to tumor progression and reduced disease-free patient survival in breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Autogenous bone grafts obtained by different harvesting techniques behave differently during the process of graft consolidation; the underlying reasons are however not fully understood. One theory is that harvesting techniques have an impact on the number and activity of the transplanted cells which contribute to the process of graft consolidation. Materials and Methods: To test this assumption, porcine bone grafts were harvested with four different surgical procedures: bone mill, piezosurgery, bone drilling (bone slurry), and bone scraper. After determining cell viability, the release of molecules affecting bone formation and resorption was assessed by reverse transcription polymerase chain reaction and immunoassay. The mitogenic and osteogenic activity of the conditioned media was evaluated in a bioassay with isolated bone cells. Results: Cell viability and the release of molecules affecting bone formation were higher in samples harvested by bone mill and bone scraper when compared with samples prepared by bone drilling and piezosurgery. The harvesting procedure also affected gene expression, for example, bone mill and bone scraper samples revealed significantly higher expression of growth factors such as bone morphogenetic protein-2 and vascular endothelial growth factor compared with the two other modalities. Receptor activator of nuclear factor kappa B ligand expression was lowest in bone scraper samples. Conclusion: These data can provide a scientific basis to better understand the impact of harvesting techniques on the number and activity of transplanted cells, which might contribute to the therapeutic outcome of the augmentation procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of cellular pathways capable of limiting ischemia/reperfusion (I/R) injury remains a frontier in medicine, and its clinical relevance is urgent. Histidine triad nucleotide binding protein 1 (HINT1) is a tumor suppressor that influences apoptosis. Because apoptotic pathways are a feature of I/R injury, we asked whether Hint1 influences hepatic I/R injury. Hint1(-/-) and C57BL/6 mice were subjected to 70% liver ischemia followed by reperfusion for 3 or 24 hours or to a sham operation. The serum aminotransferase levels, histological lesions, apoptosis, reactive oxygen species, and expression of B cell lymphoma 2-associated X protein (Bax), heme oxygenase 1 (HO-1), interleukin-6 (IL-6), IL-10, tumor necrosis factor-a, Src, nuclear factor kappa B (p65/RelA), and c-Jun were quantified. The responses to toll-like receptor ligands and nicotinamide adenine dinucleotide phosphate oxidase activity in Kupffer cells were compared in Hint1(-/-) mice and C57BL/6 mice. After I/R, the levels of serum aminotransferases, parenchymal necrosis, and hepatocellular apoptosis were significantly lower in Hint1(-/-) mice versus control mice. Furthermore, Bax expression decreased more than 2-fold in Hint1(-/-) mice, and the increases in reactive oxygen species and HO-1 expression that were evident in wild-type mice after I/R were absent in Hint1(-/-) mice. The phosphorylation of Src and the nuclear translocation of p65 were increased in Hint1(-/-) mice, whereas the nuclear expression of phosphorylated c-Jun was decreased. The levels of the protective cytokines IL-6 and IL-10 were increased in Hint1(-/-) mice. These effects increased survival after I/R in mice lacking Hint1. Hint1(-/-) Kupffer cells were less activated than control cells after stimulation with lipopolysaccharides. CONCLUSION: The Hint1 protein influences the course of I/R injury, and its ablation in Kupffer cells may limit the extent of the injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aeromonas salmonicida subsp. salmonicida contains a functional type III secretion system that is responsible for the secretion of the ADP-ribosylating toxin AexT. In this study, the authors identified AopP as a second effector protein secreted by this system. The aopP gene was detected in both typical and atypical A. salmonicida isolates and was found to be encoded on a small plasmid of approximately 6.4 kb. Sequence analysis indicates that AopP is a member of the YopJ family of effector proteins, a group of proteins that interfere with mitogen-activated protein kinase (MAPK) and/or nuclear factor kappa B (NF-kappaB) signalling pathways. AopP inhibits the NF-kappaB pathway downstream of IkappaB kinase (IKK) activation, while a catalytically inactivated mutant, AopPC177A, does not possess this inhibitory effect. Unlike other effectors of the YopJ family, such as YopJ and VopA, AopP does not inhibit the MAPK signalling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theileria parasites infect and transform cells of the ruminant immune system. Continuous proliferation and survival of Theileria-transformed cells involves the well-orchestrated activation of several host-cell signalling pathways. Constitutive NF-kappa B (nuclear factor kappa B) activation is accomplished by recruiting the IKK (I kappa B kinase) complex, a central regulator of NF-kappa B pathways, to the surface of the transforming schizont, where it becomes permanently activated. Constitutive activation of the PI-3K-PKB [phosphoinositide 3-kinase-(Akt) protein kinase B] pathway is likely to be indirect and is essential for continuous proliferation. Theileria-transformed T cells express a range of anti-apoptotic proteins that can be expected to provide protection against apoptosis induced by death receptors, as well as cellular control mechanisms that are mobilised to eliminate cells that entered a cycle of uncontrolled proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parasites have evolved a plethora of mechanisms to ensure their propagation and evade antagonistic host responses. The intracellular protozoan parasite Theileria is the only eukaryote known to induce uncontrolled host cell proliferation. Survival of Theileria-transformed leukocytes depends strictly on constitutive nuclear factor kappa B (NF-kappaB) activity. We found that this was mediated by recruitment of the multisubunit IkappaB kinase (IKK) into large, activated foci on the parasite surface. IKK signalosome assembly was specific for the transforming schizont stage of the parasite and was down-regulated upon differentiation into the nontransforming merozoite stage. Our findings provide insights into IKK activation and how pathogens subvert host-cell signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of bovine cells with lipopolysaccharide (LPS) was explored using human embryo kidney (HEK) 293 cell line stably transduced with bovine toll-like receptor-4 (TLR4) alone or in combination with bovine MD-2. These lines and mock-transduced HEK293 cells were tested by flow cytometry for LPS-fluorescein isothiocyanate (LPS-FITC) binding, nuclear factor kappa B (NFkappaB) activation, interleukin-8 (IL-8) production and interferon-beta mRNA expression/interferon (IFN) type I production. Whereas bovine TLR4 was sufficient to promote binding of high concentrations of LPS-FITC, both bovine TLR4 and MD-2 were required for activation by LPS, as assessed by NFkappaB activation and IL-8 production. Induction of IFN bioactivity was not observed in doubly transduced HEK293 cells, and no evidence for IFN-beta mRNA induction in response to LPS was obtained, although cells responded by IFN-beta mRNA expression to stimulation by Sendai virus and poly-inosinic acid-poly-cytidylic acid (poly(I:C)). Cells stably transduced with both bovine TLR4 and bovine MD-2 responded to LPS by IL-8 production, in decreasing order, in the presence of fetal bovine serum (FCS), of human serum, and of human serum albumin (HSA). The reduced activity in the presence of HSA could be restored by the addition of soluble CD14 (sCD14) but not of LPS binding protein (LBP). This is in contrast to macrophages which show a superior response to LPS in the presence of HSA when compared with macrophages stimulated by LPS in the presence of FCS. This suggests that macrophages but not HEK293 cells express factors rendering LPS stimulation serum-independent. Stably double-transduced cells reacted, in decreasing order, to LPS from Rhodobacter sphaeroides, to LPS from Escherichia coli, to synthetic lipd-IVa (compound 406), to diphosphoryl-lipid-A (S. minnesota) and to monophosphoryl-lipid-A (S. minnesota). They failed to react to the murine MD-2/TLR4 ligand taxol. This resembles the reactivity of bovine macrophages with regard to sensitivity (ED(50)) and order of potency but is distinct from the reactivity pattern of other species. This formally establishes that in order to react to LPS, cattle cells require serum factors (e.g. sCD14) and cell-expressed factors such as MD-2 and TLR4. The cell lines described are the first of a series expressing defined pattern recognition receptors (PRR) of bovine origin. They will be useful in the study of the interaction of the bovine TLR4-MD-2 complex and Gram-negative bovine pathogens, e.g. the agents causing Gram-negative bovine mastitis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.