31 resultados para Facilitation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Alpine snowbeds are habitats where the major limiting factors for plant growth are herbivory and a small time window for growth due to late snowmelt. Despite these limitations, snowbed vegetation usually forms a dense carpet of palatable plants due to favourable abiotic conditions for plant growth within the short growing season. These environmental characteristics make snowbeds particularly interesting to study the interplay of facilitation and competition. We hypothesised an interplay between resource competition and facilitation against herbivory. Further, we investigated whether these predicted neighbour effects were species-specific and/or dependent on ontogeny, and whether the balance of positive and negative plant–plant interactions shifted along a snowmelt gradient. We determined the neighbour effects by means of neighbour removal experiments along the snowmelt gradient, and linear mixed model analyses. The results showed that the effects of neighbour removal were weak but generally consistent among species and snowmelt dates, and depended on whether biomass production or survival was considered. Higher total biomass and increased fruiting in removal plots indicated that plants competed for nutrients, water, and light, thereby supporting the hypothesis of prevailing competition for resources in snowbeds. However, the presence of neighbours reduced herbivory and thereby also facilitated survival. For plant growth the facilitative effects against herbivores in snowbeds counterbalanced competition for resources, leading to a weak negative net effect. Overall the neighbour effects were not species-specific and did not change with snowmelt date. Our finding of counterbalancing effects of competition and facilitation within a plant community is of special theoretical value for species distribution models and can explain the success of models that give primary importance to abiotic factors and tend to overlook interrelations between biotic and abiotic effects on plants.
Resumo:
Image-guided microsurgery requires accuracies an order of magnitude higher than today's navigation systems provide. A critical step toward the achievement of such low-error requirements is a highly accurate and verified patient-to-image registration. With the aim of reducing target registration error to a level that would facilitate the use of image-guided robotic microsurgery on the rigid anatomy of the head, we have developed a semiautomatic fiducial detection technique. Automatic force-controlled localization of fiducials on the patient is achieved through the implementation of a robotic-controlled tactile search within the head of a standard surgical screw. Precise detection of the corresponding fiducials in the image data is realized using an automated model-based matching algorithm on high-resolution, isometric cone beam CT images. Verification of the registration technique on phantoms demonstrated that through the elimination of user variability, clinically relevant target registration errors of approximately 0.1 mm could be achieved.
Resumo:
The body schema is a key component in accomplishing egocentric mental transformations, which rely on bodily reference frames. These reference frames are based on a plurality of different cognitive and sensory cues among which the vestibular system plays a prominent role. We investigated whether a bottom-up influence of vestibular stimulation modulates the ability to perform egocentric mental transformations. Participants were significantly faster to make correct spatial judgments during vestibular stimulation as compared to sham stimulation. Interestingly, no such effects were found for mental transformation of hand stimuli or during mental transformations of letters, thus showing a selective influence of vestibular stimulation on the rotation of whole-body reference frames. Furthermore, we found an interaction with the angle of rotation and vestibular stimulation demonstrating an increase in facilitation during mental body rotations in a direction congruent with rightward vestibular afferents. We propose that facilitation reflects a convergence in shared brain areas that process bottom-up vestibular signals and top-down imagined whole-body rotations, including the precuneus and tempero-parietal junction. Ultimately, our results show that vestibular information can influence higher-order cognitive processes, such as the body schema and mental imagery.
Resumo:
Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes.
Resumo:
1. Positive interactions among plants can increase species richness by relaxing environmental filters and providing more heterogeneous environments. However, it is not known if facilitation could affect coexistence through other mechanisms. Most studies on plant coexistence focus on negative frequency-dependent mechanisms (decreasing the abundance of common species); here, we test if facilitation can enhance coexistence by giving species an advantage when rare. 2. To test our hypothesis, we used a global data set from drylands and alpine environments and measured the intensity of facilitation (based on co-occurrences with nurse plants) for 48 species present in at least 4 different sites and with a range of abundances in the field. We compared these results with the degree of facilitation experienced by species which are globally rare or common (according to the IUCN Red List), and with a larger data base including over 1200 co-occurrences of target species with their nurses. 3. Facilitation was stronger for rare species (i.e. those having lower local abundances or considered endangered by the IUCN) than for common species, and strongly decreased with the abundance of the facilitated species. These results hold after accounting for the distance of each species from its ecological optimum (i.e. the degree of functional stress it experiences). 4. Synthesis. Our results highlight that nurse plants not only increase the number of species able to colonize a given site, but may also promote species coexistence by preventing the local extinction of rare species. Our findings illustrate the role that nurse plants play in conserving endangered species and link the relationship between facilitation and diversity with coexistence theory. As such, they provide further mechanistic understanding on how facilitation maintains plant diversity.
Resumo:
Background: A prerequisite for high performance in motor tasks is the acquisition of egocentric sensory information that must be translated into motor actions. A phenomenon that supports this process is the Quiet Eye (QE) defined as long final fixation before movement initiation. It is assumed that the QE facilitates information processing, particularly regarding movement parameterization. Aims: The question remains whether this facilitation also holds for the information-processing stage of response selection and – related to perception crucial – stage of stimulus identification. Method: In two experiments with sport science students, performance-enhancing effects of experimentally manipulated QE durations were tested as a function of target position predictability and target visibility, thereby selectively manipulating response selection and stimulus identification demands, respectively. Results: The results support the hypothesis of facilitated information processing through long QE durations since in both experiments performance-enhancing effects of long QE durations were found under increased processing demands only. In Experiment 1, QE duration affected performance only if the target position was not predictable and positional information had to be processed over the QE period. In Experiment 2, in a full vs. no target visibility comparison with saccades to the upcoming target position induced by flicker cues, the functionality of a long QE duration depended on the visual stimulus identification period as soon as the interval falls below a certain threshold. Conclusions: The results corroborate earlier findings that QE efficiency depends on demands put on the visuomotor system, thereby furthering the assumption that the phenomenon supports the processes of sensorimotor integration.
Resumo:
Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant–plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely sensed images freely available through Google Earth with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant–plant interactions. Most of the patterns found from the remotely sensed images were more right skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. Read More: http://www.esajournals.org/doi/10.1890/14-2358.1
Resumo:
PURPOSE : For the facilitation of minimally invasive robotically performed direct cochlea access (DCA) procedure, a surgical planning tool which enables the surgeon to define landmarks for patient-to-image registration, identify the necessary anatomical structures and define a safe DCA trajectory using patient image data (typically computed tomography (CT) or cone beam CT) is required. To this end, a dedicated end-to-end software planning system for the planning of DCA procedures that addresses current deficiencies has been developed. METHODS : Efficient and robust anatomical segmentation is achieved through the implementation of semiautomatic algorithms; high-accuracy patient-to-image registration is achieved via an automated model-based fiducial detection algorithm and functionality for the interactive definition of a safe drilling trajectory based on case-specific drill positioning uncertainty calculations was developed. RESULTS : The accuracy and safety of the presented software tool were validated during the conduction of eight DCA procedures performed on cadaver heads. The plan for each ear was completed in less than 20 min, and no damage to vital structures occurred during the procedures. The integrated fiducial detection functionality enabled final positioning accuracies of [Formula: see text] mm. CONCLUSIONS : Results of this study demonstrated that the proposed software system could aid in the safe planning of a DCA tunnel within an acceptable time.
Resumo:
Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.
Resumo:
The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.