26 resultados para FORMIC-ACID OXIDATION

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liquid–vapor interface is difficult to access experimentally but is of interest from a theoretical and applied point of view and has particular importance in atmospheric aerosol chemistry. Here we examine the liquid–vapor interface for mixtures of water, sodium chloride, and formic acid, an abundant chemical in the atmosphere. We compare the results of surface tension and X-ray photoelectron spectroscopy (XPS) measurements over a wide range of formic acid concentrations. Surface tension measurements provide a macroscopic characterization of solutions ranging from 0 to 3 M sodium chloride and from 0 to over 0.5 mole fraction formic acid. Sodium chloride was found to be a weak salting out agent for formic acid with surface excess depending only slightly on salt concentration. In situ XPS provides a complementary molecular level description about the liquid–vapor interface. XPS measurements over an experimental probe depth of 51 Å gave the C 1s to O 1s ratio for both total oxygen and oxygen from water. XPS also provides detailed electronic structure information that is inaccessible by surface tension. Density functional theory calculations were performed to understand the observed shift in C 1s binding energies to lower values with increasing formic acid concentration. Part of the experimental −0.2 eV shift can be assigned to the solution composition changing from predominantly monomers of formic acid to a combination of monomers and dimers; however, the lack of an appropriate reference to calibrate the absolute BE scale at high formic acid mole fraction complicates the interpretation. Our data are consistent with surface tension measurements yielding a significantly more surface sensitive measurement than XPS due to the relatively weak propensity of formic acid for the interface. A simple model allowed us to replicate the XPS results under the assumption that the surface excess was contained in the top four angstroms of solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic bioactivation, glutathione depletion, and covalent binding are the early hallmark events after acetaminophen (APAP) overdose. However, the subsequent metabolic consequences contributing to APAP-induced hepatic necrosis and apoptosis have not been fully elucidated. In this study, serum metabolomes of control and APAP-treated wild-type and Cyp2e1-null mice were examined by liquid chromatography-mass spectrometry (LC-MS) and multivariate data analysis. A dose-response study showed that the accumulation of long-chain acylcarnitines in serum contributes to the separation of wild-type mice undergoing APAP-induced hepatotoxicity from other mouse groups in a multivariate model. This observation, in conjunction with the increase of triglycerides and free fatty acids in the serum of APAP-treated wild-type mice, suggested that APAP treatment can disrupt fatty acid beta-oxidation. A time-course study further indicated that both wild-type and Cyp2e1-null mice had their serum acylcarnitine levels markedly elevated within the early hours of APAP treatment. While remaining high in wild-type mice, serum acylcarnitine levels gradually returned to normal in Cyp2e1-null mice at the end of the 24 h treatment. Distinct from serum aminotransferase activity and hepatic glutathione levels, the pattern of serum acylcarnitine accumulation suggested that acylcarnitines can function as complementary biomarkers for monitoring the APAP-induced hepatotoxicity. An essential role for peroxisome proliferator-activated receptor alpha (PPARalpha) in the regulation of serum acylcarnitine levels was established by comparing the metabolomic responses of wild-type and Ppara-null mice to a fasting challenge. The upregulation of PPARalpha activity following APAP treatment was transient in wild-type mice but was much more prolonged in Cyp2e1-null mice. Overall, serum metabolomics of APAP-induced hepatotoxicity revealed that the CYP2E1-mediated metabolic activation and oxidative stress following APAP treatment can cause irreversible inhibition of fatty acid oxidation, potentially through suppression of PPARalpha-regulated pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the late 1990s and early 2000s, derivatives of well-known designer drugs as well as new psychoactive compounds have been sold on the illicit drug market and have led to intoxications and fatalities. The LC-MS/MS screening method presented covers 31 new designer drugs as well as cathinone, methcathinone, phencyclidine, and ketamine which were included to complete the screening spectrum. All but the last two are modified molecular structures of amphetamine, tryptamine, or piperazine. Among the amphetamine derivatives are cathinone, methcathinone, 3,4-DMA, 2,5-DMA, DOB, DOET, DOM, ethylamphetamine, MDDMA, 4-MTA, PMA, PMMA, 3,4,5-TMA, TMA-6 and members of the 2C group: 2C-B, 2C-D, 2C-H, 2C-I, 2C-P, 2C-T-2, 2C-T-4, and 2C-T-7. AMT, DPT, DiPT, MiPT, DMT, and 5MeO-DMT are contained in the tryptamine group, BZP, MDBP, TFMPP, mCPP, and MeOPP in the piperazine group. Using an Applied Biosystems LC-MS/MS API 365 TurboIonSpray it is possible to identify all 35 substances. After addition of internal standards and mixed-mode solid-phase extraction the analytes are separated using a Synergi Polar RP column and gradient elution with 1 mM ammonium formate and methanol/0.1% formic acid as mobile phases A and B. Data acquisition is performed in MRM mode with positive electro spray ionization. The assay is selective for all tested substances. Limits of detection were determined by analyzing S/N-ratios and are between 1.0 and 5.0 ng/mL. Matrix effects lie between 65% and 118%, extraction efficiencies range from 72% to 90%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deficiencies of subunits of the transcriptional regulatory complex Mediator generally result in embryonic lethality, precluding study of its physiological function. Here we describe a missense mutation in Med30 causing progressive cardiomyopathy in homozygous mice that, although viable during lactation, show precipitous lethality 2-3 wk after weaning. Expression profiling reveals pleiotropic changes in transcription of cardiac genes required for oxidative phosphorylation and mitochondrial integrity. Weaning mice to a ketogenic diet extends viability to 8.5 wk. Thus, we establish a mechanistic connection between Mediator and induction of a metabolic program for oxidative phosphorylation and fatty acid oxidation, in which lethal cardiomyopathy is mitigated by dietary intervention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The chemotherapeutic drug 5-fluorouracil (5-FU) is widely used for treating solid tumors. Response to 5-FU treatment is variable with 10-30% of patients experiencing serious toxicity partly explained by reduced activity of dihydropyrimidine dehydrogenase (DPD). DPD converts endogenous uracil (U) into 5,6-dihydrouracil (UH(2) ), and analogously, 5-FU into 5-fluoro-5,6-dihydrouracil (5-FUH(2) ). Combined quantification of U and UH(2) with 5-FU and 5-FUH(2) may provide a pre-therapeutic assessment of DPD activity and further guide drug dosing during therapy. Here, we report the development of a liquid chromatography-tandem mass spectrometry assay for simultaneous quantification of U, UH(2) , 5-FU and 5-FUH(2) in human plasma. Samples were prepared by liquid-liquid extraction with 10:1 ethyl acetate-2-propanol (v/v). The evaporated samples were reconstituted in 0.1% formic acid and 10 μL aliquots were injected into the HPLC system. Analyte separation was achieved on an Atlantis dC(18) column with a mobile phase consisting of 1.0 mm ammonium acetate, 0.5 mm formic acid and 3.3% methanol. Positively ionized analytes were detected by multiple reaction monitoring. The analytical response was linear in the range 0.01-10 μm for U, 0.1-10 μm for UH(2) , 0.1-75 μm for 5-FU and 0.75-75 μm for 5-FUH(2) , covering the expected concentration ranges in plasma. The method was validated following the FDA guidelines and applied to clinical samples obtained from ten 5-FU-treated colorectal cancer patients. The present method merges the analysis of 5-FU pharmacokinetics and DPD activity into a single assay representing a valuable tool to improve the efficacy and safety of 5-FU-based chemotherapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary aim was to investigate the effect of combined butafosfan and cyanocobalamin on liver metabolism in early lactating cows through mRNA expression measurements of genes encoding 31 enzymes and transport proteins of major metabolic processes in the liver using 16 multiparous early lactating dairy cows. The treatments included i.v. injection of 10 mL/100 kg of body weight combined butafosfan and cyanocobalamin (TG, n = 8) on 3 d consecutively at 25 +/- 3 d in milk or injection with physiological saline solution similarly applied (CG, n = 8). Results include a higher daily milk production for TG cows (41.1 +/- 0.9 kg, mean +/- SEM) compared with CG cows (39.5 +/- 0.7 kg). In plasma, the concentration of inorganic phosphorus was lower in the TG cows (1.25 +/- 0.08 mmol/L) after the treatment than in the CG cows (1.33 +/- 0.07 mmol/L). The plasma beta-hydroxybutyrate concentration was 0.65 +/- 0.13 mmol/L for all cows before the treatment, and remained unaffected post treatment. The unique result was that in the liver, the mRNA abundance of acyl-coenzyme A synthetase long-chain family member 1, involved in fatty acid oxidation and biosynthesis, was lower across time points after the treatment for TG compared with CG cows (17.5 +/- 0.15 versus 18.1 +/- 0.24 cycle threshold, log(2), respectively). In conclusion, certain effects of combined butafosfan and cyanocobalamin were observed on mRNA abundance of a gene in the liver of nonketotic early lactating cows.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of focusing weak bases using a transient pH boundary was examined via high-resolution computer simulation software. Emphasis was placed on the mechanism and impact that the presence of salt, namely, NaCl, has on the ability to focus weak bases. A series of weak bases with mobilities ranging from 5 x 10(-9) to 30 x 10(-9) m2/V x s and pKa values between 3.0 and 7.5 were examined using a combination of 65.6 mM formic acid, pH 2.85, for the separation electrolyte, and 65.6 mM formic acid, pH 8.60, for the sample matrix. Simulation data show that it is possible to focus weak bases with a pKa value similar to that of the separation electrolyte, but it is restricted to weak bases having an electrophoretic mobility of 20 x 10(-9) m2/V x s or quicker. This mobility range can be extended by the addition of NaCl, with 50 mM NaCl allowing stacking of weak bases down to a mobility of 15 x 10(-9) m2/V x s and 100 mM extending the range to 10 x 10(-9) m2/V x s. The addition of NaCl does not adversely influence focusing of more mobile bases, but does prolong the existence of the transient pH boundary. This allows analytes to migrate extensively through the capillary as a single focused band around the transient pH boundary until the boundary is dissipated. This reduces the length of capillary that is available for separation and, in extreme cases, causes multiple analytes to be detected as a single highly efficient peak.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypoxia is an important modulator of the skeletal muscle's oxidative phenotype. However, little is known regarding the molecular circuitry underlying the muscular hypoxia response and the interaction of hypoxia with other stimuli of muscle oxidative capacity. We hypothesized that exposure of mice to severe hypoxia would promote the expression of genes involved in capillary morphogenesis and glucose over fatty acid metabolism in active or disused soleus muscle of mice. Specifically, we tested whether the hypoxic response depends on oxygen sensing via the alpha-subunit of hypoxia-inducible factor-1 (HIF-1 alpha). Spontaneously active wildtype and HIF-1 alpha heterozygous deficient adult female C57B1/6 mice were subjected to hypoxia (PiO2 70 mmHg). In addition, animals were subjected to hypoxia after 7 days of muscle disuse provoked by hindlimb suspension. Soleus muscles were rapidly isolated and analyzed for transcript level alterations with custom-designed AtlasTM cDNA expression arrays (BD Biosciences) and cluster analysis of differentially expressed mRNAs. Multiple mRNA elevations of factors involved in dissolution and stabilization of blood vessels, glycolysis, and mitochondrial respiration were evident after 24 hours of hypoxia in soleus muscle. In parallel transcripts of fat metabolism were reduced. A comparable hypoxia-induced expression pattern involving complex alterations of the IGF-I axis was observed in reloaded muscle after disuse. This hypoxia response in spontaneously active animals was blunted in the HIF-1 alpha heterozygous deficient mice demonstrating 35% lower HIF-1 alpha mRNA levels. Our molecular observations support the concept that severe hypoxia provides HIF-1-dependent signals for remodeling of existing blood vessels, a shift towards glycolytic metabolism and altered myogenic regulation in oxidative mouse muscle and which is amplified by enhanced muscle use. These findings further imply differential mitochondrial turnover and a negative role of HIF-1 alpha for control of fatty acid oxidation in skeletal muscle exposed to one day of severe hypoxia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insufficient feed intake during early lactation results in elevated body fat mobilization to meet energy demands for milk production. Hepatic energy metabolism is involved by increasing endogenous glucose production and hepatic glucose output for milk synthesis and by adaptation of postcalving fuel oxidation. Given that cows differ in their degree of fat mobilization around parturition, indicated by variable total liver fat concentration (LFC), the study investigated the influence of peripartum fat mobilization on hepatic gene expression involved in gluconeogenesis, fatty acid oxidation, ketogenesis, and cholesterol synthesis, as well as transcriptional factors referring to energy metabolism. German Holstein cows were grouped according to mean total LFC on d 1, 14, and 28 after parturition as low [<200mg of total fat/g of dry matter (DM); n=10], medium (200-300 mg of total fat/g of DM; n=10), and high (>300 mg of total fat/g of DM; n=7), indicating fat mobilization during early lactation. Cows were fed total mixed rations ad libitum and held under equal conditions. Liver biopsies were taken at d 56 and 15 before and d 1, 14, 28, and 49 after parturition to measure mRNA abundances of pyruvate carboxylase (PC); phosphoenolpyruvate carboxykinase; glucose-6-phosphatase; propionyl-coenzyme A (CoA) carboxylase α; carnitine palmitoyl-transferase 1A (CPT1A); acyl-CoA synthetase, long chain 1 (ASCL1); acyl-CoA dehydrogenase, very long chain; 3-hydroxy-3-methylglutaryl-CoA synthase 1 and 2; sterol regulatory element-binding factor 1; and peroxisome proliferator-activated factor α. Total LFC postpartum differed greatly among cows, and the mRNA abundance of most enzymes and transcription factors changed with time during the experimental period. Abundance of PC mRNA increased at parturition to a greater extent in high- and medium-LFC groups than in the low-LFC group. Significant LFC × time interactions for ACSL1 and CPT1A during the experimental period indicated variable gene expression depending on LFC after parturition. Correlations between hepatic gene expression and performance data and plasma concentrations of metabolites and hormones showed time-specific relations during the transition period. Elevated body fat mobilization during early lactation affected gene expression involved in gluconeogenesis to a greater extent than gene expression involved in lipid metabolism, indicating the dependence of hepatic glucose metabolism on hepatic lipid status and fat mobilization during early lactation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation, and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develops. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim was to study the variation in metabolic responses in early-lactating dairy cows (n = 232) on-farm that were pre-selected for a high milk fat content (>45 g/l) and a high fat/protein ratio in milk (>1.5) in their previous lactation. Blood was assayed for concentrations of metabolites and hormones. Liver was measured for mRNA abundance of 25 candidate genes encoding enzymes and receptors involved in gluconeogenesis (6), fatty acid β-oxidation (6), fatty acid and triglyceride synthesis (5), cholesterol synthesis (4), ketogenesis (2) and the urea cycle (2). Two groups of cows were formed based on the plasma concentrations of glucose, non-esterified fatty acids (NEFA) and β-hydroxybutyric acid (BHBA) (GRP+, high metabolic load; glucose <3.0 mm, NEFA >300 μm and BHBA >1.0 mm, n = 30; GRP-, low metabolic load; glucose >3.0 mm, NEFA <300 μm and BHBA <1.0 mm, n = 30). No differences were found between GRP+ and GRP- for the milk yield at 3 weeks post-partum, but milk fat content was higher (p < 0.01) for GRP+ than for GRP-. In week 8 post-partum, milk yield was higher in GRP+ in relation to GRP- (37.5 vs. 32.5 kg/d; p < 0.01). GRP+ in relation to GRP- had higher (p < 0.001) NEFA and BHBA and lower glucose, insulin, IGF-I, T3 , T4 concentrations (p < 0.01). The mRNA abundance of genes related to gluconeogenesis, fatty acid β-oxidation, fatty acid and triglyceride synthesis, cholesterol synthesis and the urea cycle was different in GRP+ compared to GRP- (p < 0.05), although gene transcripts related to ketogenesis were similar between GRP+ and GRP-. In conclusion, high metabolic load post-partum in dairy cows on-farm corresponds to differences in the liver in relation to dairy cows with low metabolic load, even though all cows were pre-selected for a high milk fat content and fat/protein ratio in milk in their previous lactation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The adaptive response to extreme endurance exercise might involve transcriptional and translational regulation by microRNAs (miRNAs). Therefore, the objective of the present study was to perform an integrated analysis of the blood transcriptome and miRNome (using microarrays) in the horse before and after a 160 km endurance competition. A total of 2,453 differentially expressed genes and 167 differentially expressed microRNAs were identified when comparing pre- and post-ride samples. We used a hypergeometric test and its generalization to gain a better understanding of the biological functions regulated by the differentially expressed microRNA. In particular, 44 differentially expressed microRNAs putatively regulated a total of 351 depleted differentially expressed genes involved variously in glucose metabolism, fatty acid oxidation, mitochondrion biogenesis, and immune response pathways. In an independent validation set of animals, graphical Gaussian models confirmed that miR-21-5p, miR-181b-5p and miR-505-5p are candidate regulatory molecules for the adaptation to endurance exercise in the horse. To the best of our knowledge, the present study is the first to provide a comprehensive, integrated overview of the microRNA-mRNA co-regulation networks that may have a key role in controlling post-transcriptomic regulation during endurance exercise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6–C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6–C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.