5 resultados para FLUX-LINE-LATTICE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.
Resumo:
A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.
Resumo:
The quantum dimer model on the square lattice is a U(1) gauge theory that addresses aspects of the physics of high-Tc superconductors. Using a quantum Monte Carlo method, we show that the theory exists in a confining columnar valence bond solid phase. The interfaces separating distinct columnar phases display plaquette order, which, however, is not realized as a bulk phase. Static “electric” charges are confined by flux tubes that consist of multiple strands, each carrying a fractionalized flux ¼. A soft pseudo-Goldstone mode (which becomes exactly massless at the Rokhsar-Kivelson point) extends deep into the columnar phase, with potential implications for high-Tc physics.
Resumo:
We regularize compact and non-compact Abelian Chern–Simons–Maxwell theories on a spatial lattice using the Hamiltonian formulation. We consider a doubled theory with gauge fields living on a lattice and its dual lattice. The Hilbert space of the theory is a product of local Hilbert spaces, each associated with a link and the corresponding dual link. The two electric field operators associated with the link-pair do not commute. In the non-compact case with gauge group R, each local Hilbert space is analogous to the one of a charged “particle” moving in the link-pair group space R2 in a constant “magnetic” background field. In the compact case, the link-pair group space is a torus U(1)2 threaded by k units of quantized “magnetic” flux, with k being the level of the Chern–Simons theory. The holonomies of the torus U(1)2 give rise to two self-adjoint extension parameters, which form two non-dynamical background lattice gauge fields that explicitly break the manifest gauge symmetry from U(1) to Z(k). The local Hilbert space of a link-pair then decomposes into representations of a magnetic translation group. In the pure Chern–Simons limit of a large “photon” mass, this results in a Z(k)-symmetric variant of Kitaev’s toric code, self-adjointly extended by the two non-dynamical background lattice gauge fields. Electric charges on the original lattice and on the dual lattice obey mutually anyonic statistics with the statistics angle . Non-Abelian U(k) Berry gauge fields that arise from the self-adjoint extension parameters may be interesting in the context of quantum information processing.
Resumo:
We consider a three-dimensional effective theory of Polyakov lines derived previously from lattice Yang-Mills theory and QCD by means of a resummed strong coupling expansion. The effective theory is useful for investigations of the phase structure, with a sign problem mild enough to allow simulations also at finite density. In this work we present a numerical method to determine improved values for the effective couplings directly from correlators of 4d Yang-Mills theory. For values of the gauge coupling up to the vicinity of the phase transition, the dominant short range effective coupling are well described by their corresponding strong coupling series. We provide numerical results also for the longer range interactions, Polyakov lines in higher representations as well as four-point interactions, and discuss the growing significance of non-local contributions as the lattice gets finer. Within this approach the critical Yang-Mills coupling β c is reproduced to better than one percent from a one-coupling effective theory on N τ = 4 lattices while up to five couplings are needed on N τ = 8 for the same accuracy.