4 resultados para FLUOROQUINOLONE RESISTANCE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The epidemiology of an enrofloxacin-resistant Escherichia coli clone was investigated during two separate outbreaks of colibacillosis in the Danish broiler production. In total five flocks were reported affected by the outbreaks. Recorded first-week mortalities were in the range of 1.7-12.7%. The clone was first isolated from dead broilers and subsequently demonstrated in samples from associated hatchers and the parent flock with its embryonated eggs, suggesting a vertical transmission from the parents. The second outbreak involved two broiler flocks unrelated to the affected flocks from the first outbreak. However, the clone could not be demonstrated in the associated parent flock. Furthermore, samplings from grand-parent flocks were negative for the outbreak clone. The clonality was evaluated by plasmid profiling and pulsed-field gel electrophoresis. None of the recognized virulence factors were demonstrated in the outbreak clone by microarray and PCR assay. The molecular background for the fluoroquinolone-resistance was investigated and point mutations in gyrA and parC leading to amino-acid substitutions in quinolone-resistance determining regions of GyrA and ParC were demonstrated. Vertical transmission of enrofloxacin-resistant E. coli from healthy parents resulting in high first-week mortality in the offspring illustrates the potential of the emergence and spreading of fluoroquinolone-resistant bacteria in animal husbandry, even though the use of fluoroquinolones is restricted.
Resumo:
Fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius isolates harbor two new staphylococcal cassette chromosome mec (SCCmec) elements that belong to class A, allotype 3 (SCCmec II-III), and to the new allotype 5 (SCCmec VII). Analysis of the complete nucleotide sequences of the topoisomerase loci gyrB/gyrA and grlB/grlA revealed mutations involved in fluoroquinolone resistance.
Resumo:
Genetic characterization of methicillin-resistant Staphylococcus pseudintermedius (MRSP) from Thailand and Israel revealed the presence of a predominant atypical clonal lineage which was not typeable by SmaI-PFGE and SCCmec typing. All the atypical isolates (n = 34) belonged to CC45 (30 ST45 and 2 ST179 isolates, 1 ST57 isolate, and 1 ST85 isolate). The isolates originated from healthy and diseased dogs and cats, as well as from the environment of one clinic. Cfr9I-pulsed-field gel electrophoresis (Cfr9I-PFGE) and dru typing permitted the further distinction of CC45 isolates from the two different countries. Microarray analysis identified genes that confer resistance to β-lactams (mecA; blaZ), aminoglycosides [aac(6')-Ie-aph(2')-Ia; aph(3')-III; ant(6)-Ia], macrolides and lincosamides [erm(B)], tetracyclines [tet(M)], trimethoprim [dfr(G)], streptothricin (sat4), and chloramphenicol (catpC221). Fluoroquinolone resistance was attributed to specific amino acid substitutions, i.e., Ser84Leu in GyrA and Ser80Ile and Asp84Asn in GrlA. A novel pseudo-staphylococcal cassette chromosome (ΨSCCmec57395) element was identified in MRSP strain 57395 (sequence type ST45) by whole-genome sequencing. The 12,282-bp ΨSCCmec57395 element contained a class C1 mec gene complex but no ccr genes. In addition to the methicillin resistance gene mecA, ΨSCCmec57395 also carried determinants of resistance to heavy metals, such as arsenic, cadmium, and copper. Bsu36I restriction analysis of the ΨSCCmec57395 element amplified by long-range PCR revealed the presence of ΨSCCmec57395 in the 33 additional isolates of MRSP CC45. The ΨSCCmec57395 element represents a new class of SCCmec and has been identified in MRSP of CC45, which is a predominant clonal lineage in Israel and Thailand.
Resumo:
The genetic diversity of 115 Campylobacter coli strains, isolated from pigs of 59 geographical distant farms in Switzerland, were characterized on the basis of their DNA fingerprints and resistance to macrolides and fluoroquinolones. Sequence analysis showed that the macrolide-resistant isolates had a point mutation in the 23S ribosomal RNA (rRNA) genes (A2075G) and that the fluoroquinolone-resistant isolates had a point mutation in the gyrase gene gyrA (C257T). One fluoroquinolone-resistant strain had an additional transition mutation in the gyrB gene (A1471C). The flaA restriction fragment length polymorphism (RFLP) genotyping revealed that 57% of the isolates were genetically different. Point mutations in the 23S rRNA and gyrA genes could be found in both genetically distant and genetically related isolates. Additionally, isolates with and without point mutations were found within individual farms and on different farms. This study showed that the ciprofloxacin and erythromycin-resistant C. coli population present on the pig farms is not issued from a common ancestral clone, but individual Campylobacter strains have most likely mutated independently to acquire resistances under the selective pressure of an antibiotic.