4 resultados para FLUORENE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the developmental toxicity of the polycyclic aromatic hydrocarbons (PAHs) 11H-benzo(b)fluorene (BBF) and 4-azapyrene (AP) in comparison to the known teratogen retene. Developmental toxicity assays were performed in zebrafish embryos exposed for 120 h. BBF and retene induced a similar dioxin-like phenotype, whereas AP showed distinct effects, particularly craniofacial malformations. Microarray analysis revealed that for BBF and retene, drug metabolism pathways were induced, which were confirmed by subsequent studies of cyp1a gene expression. For AP, microarray analysis revealed the regulation of genes involved in retinoid metabolism and hematological functions. Studies with a panel of CALUX((R)) bioassays to screen for endocrine disrupting activity of the compounds also revealed novel antagonistic effects of BBF and retene on androgen and progesterone receptors. Classification analysis revealed distinct gene expression profiles for both individual and combined PAH exposure. This study highlights the potential health risk of non priority PAHs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The supramolecular organization of fluorene building blocks in a DNA scaffold is described. The molecular assembly into ordered pi-aggregates leads to distinct changes in the electronic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We tested whether OPAHs were formed during 19-wk incubation of a fertile soil at optimum moisture in the dark. The soil had initial mean (±s.e., n = 3) concentrations of 22 ± 1.7 (Σ28PAHs) and 4.2 ± 0.34 μg g−1 (Σ14OPAHs). After 19 wk, individual PAH and OPAH concentrations had decreased by up to 14 and 37%, respectively. Decreases in % of initial concentrations were positively correlated with their KOW values for PAHs (r = 0.48, p = 0.022) and 9 OPAHs (r = 0.78, p = 0.013) but negatively, albeit not significantly, for 5 OPAHs (r = −0.75, p = 0.145) suggesting net formation of some OPAHs. The latter was supported by significantly increasing 1-indanone/fluorene ratios while the other OPAH to parent-PAH ratios remained constant or tended to increase. We conclude that OPAHs are formed in soils during microbial turnover of PAHs in a short time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Environmental conditions in the tropics favor the formation of polar polycyclic aromatic compound (polar PACs, such as oxygenated PAHs [OPAHs] and azaarenes [AZAs]), but little is known about these hazardous compounds in tropical soils. The objectives of this work were to determine (i) the level of contamination of soils (0–5 and 5–10 cm layers) from the tropical metropolis of Bangkok (Thailand) with OPAHs and AZAs and (ii) the influence of urban emission sources and soil properties on the distribution of PACs. We hypothesized that the higher solar insolation and microbial activity in the tropics than in the temperate zone will lead to enhanced secondary formation of OPAHs. Hence, OPAH to related parent-PAH ratios will be higher in the tropical soils of Bangkok than in temperate soils of Bratislava and Gothenburg. The concentrations of ∑15OPAHs (range: 12–269 ng g−1) and ∑4AZAs (0.1–31 ng g−1) measured in soils of Bangkok were lower than those in several cities of the industrialized temperate zone. The ∑15OPAHs (r = 0.86, p < 0.01) and ∑4AZAs (r = 0.67, p < 0.01) correlated significantly with those of ∑20PAHs highlighting similar sources and related fate. The octanol–water partition coefficient did not explain the transport to the subsoil, indicating soil mixing as the reason for the polar PAC load of the lower soil layer. Data on PAC concentrations in soils of Bratislava and Gothenburg were taken from published literature. The individual OPAH to parent-PAH ratios in soils of Bangkok were mostly higher than those of Bratislava and Gothenburg (e.g. 9-fluorenone/fluorene concentration ratio was 12.2 ± 6.7, 5.6 ± 2.4, and 0.7 ± 02 in Bangkok, Bratislava and Gothenburg soils, respectively) supporting the view that tropical environmental conditions and higher microbial activity likely lead to higher OPAH to parent-PAH ratios in tropical than in temperate soils.