7 resultados para FIBER ORIENTATION
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE To gain a deeper understanding of the influence of skeletal muscle fiber orientation on metabolite visibility, magnetization transfer from water, and water proton relaxation rates in (1) H MR spectra. METHODS Non-water-suppressed MR spectroscopy was performed in tibialis anterior muscle (TA) of 10 healthy adults, with the TA oriented either parallel or at the magic angle to the 3T field. Spectra were acquired with metabolite-cycled PRESS, and water inversion from 50 to 2510 ms before excitation. Water proton T2 relaxation was sampled with STEAM with echo times from 12 to 272 ms. RESULTS Apparent concentrations of total creatine (tCr), taurine, and trimethylammonium compounds were reduced by 29% to 67% when TA was parallel to B0 . Both tCr peak areas were strongly correlated to the methylene peak splitting. Magnetization transfer rates from water to tCr CH3 were not significantly different between orientations. Water T1 s were similar between orientations, but T2 s were statistically significantly shorter by 1 ms in the parallel orientation (P = 0.002). CONCLUSION Muscle metabolite visibilities in MR spectroscopy and water T2 times depend substantially on muscle fiber orientation relative to B0 . In contrast, magnetization transfer rates appear to depend on muscle composition, rather than fiber orientation. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Aim of the study was to determine distribution and depletion patterns of intramyocellular lipids (IMCL) in leg muscles before and after two types of standardized endurance exercise. ¹H-magnetic resonance spectroscopic imaging was performed (1) in the thigh of eight-trained cyclists after exercising on an ergometer for 3 h at 52 ± 8% of maximal speed and (2) in the lower leg of eight-trained runners after exercising on a treadmill for 3 h at 49 ± 3% of maximal workload. Pre-exercise IMCL contents were reduced postexercise in 11 out of 13 investigated upper and lower leg muscles (P < 0.015 for all). A strong linear correlation with a slope of ∼0.5 between pre-exercise IMCL content and IMCL depletion was found. IMCL depletion differed strongly between muscles. Absolute and also relative IMCL reduction was significantly higher in muscles with predominantly slow fibers compared to those with fast fibers. Creatine levels and fiber orientation were stable and unchanged after exercise, while trimethyl-ammonium groups increased. This is presented in the accompanying paper. In conclusion, a systematic comparison of metabolic changes in cross sections of the upper and lower leg was performed. The results imply that pre-exercise IMCL levels determine the degree of IMCL depletion after exercise.
Resumo:
1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology.
Resumo:
In this study the distribution of intramyocellular lipids (IMCL) in human calf muscles was determined by 1H-MR spectroscopic imaging (MRSI) measurements. An obstacle for MRSI measurements in the calf, including different muscles, is the inevitable inclusion of regions with high concentrations of extramyocellular lipids (EMCL). This can lead to signal bleeding and consequently to unpredictable overlaps of IMCL resonances with EMCL in voxels of interest. The results of this study show that signal bleeding from EMCL can be substantially reduced in voxels from calf muscles by the application of a lipid extrapolation (LE) procedure (Haupt et al., Magn Reson Med 1996;35:678). The spectra of all voxels located within muscle tissue were fitted, and the metabolite values were assigned to one of 10 different muscles based on image segmentation. Significant IMCL differences between some muscles were obtained, with high values in m. soleus and two to three times lower values in the tibialis anterior, tibialis posterior, and gastrocnemius muscles. In addition to gross differences between muscles, significant intersubject differences were observed in both IMCL content and distribution over different muscles. A significant correlation between fiber orientation (obtained from orientation-dependent dipolar coupling of creatine and taurine resonances) and IMCL content was found, indicating that IMCL content is directly correlated to biomechanical properties.
Resumo:
BACKGROUND Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.
Resumo:
Relationships between mineralization, collagen orientation and indentation modulus were investigated in bone structural units from the mid-shaft of human femora using a site-matched design. Mineral mass fraction, collagen fibril angle and indentation moduli were measured in registered anatomical sites using backscattered electron imaging, polarized light microscopy and nano-indentation, respectively. Theoretical indentation moduli were calculated with a homogenization model from the quantified mineral densities and mean collagen fibril orientations. The average indentation moduli predicted based on local mineralization and collagen fibers arrangement were not significantly different from the average measured experimentally with nanoindentation (p=0.9). Surprisingly, no substantial correlation of the measured indentation moduli with tissue mineralization and/or collagen fiber arrangement was found. Nano-porosity, micro-damage, collagen cross-links, non-collagenous proteins or other parameters affect the indentation measurements. Additional testing/simulation methods need to be considered to properly understand the variability of indentation moduli, beyond the mineralization and collagen arrangement in bone structural units.
Resumo:
PURPOSE Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. METHODS Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0 = 9.4T, and water temperatures were changed between 25°C and 65°C. RESULTS The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . CONCLUSION Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0 . Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.