4 resultados para FAO Penman-Monteith
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Question: Is stomatal regulation specific for climate and tree species, and does it reveal species-specific responses to drought? Is there a link to vegetation dynamics? Location: Dry inner alpine valley, Switzerland Methods: Stomatal aperture (θE) of Pinus sylvestris, Quercus pubescens, Juniperus communis and Picea abies were continuously estimated by the ratio of measured branch sap flow rates to potential transpiration rates (adapted Penman-Monteith single leaf approach) at 10-min intervals over four seasons. Results: θE proved to be specific for climate and species and revealed distinctly different drought responses: Pinus stomata close disproportionately more than neighbouring species under dry conditions, but has a higher θE than the other species when weather was relatively wet and cool. Quercus keeps stomata more open under drought stress but has a lower θE under humid conditions. Juniperus was most drought-tolerant, whereas Picea stomata close almost completely during summer. Conclusions: The distinct microclimatic preferences of the four tree species in terms of θE strongly suggest that climate (change) is altering tree physiological performances and thus species-specific competitiveness. Picea and Pinus currently live at the physiological limit of their ability to withstand increasing temperature and drought intensities at the sites investigated, whereas Quercus and Juniperus perform distinctly better. This corresponds, at least partially, with regional vegetation dynamics: Pinus has strongly declined, whereas Quercus has significantly increased in abundance in the past 30 years. We conclude that θE provides an indication of a species' ability to cope with current and predicted climate.
Resumo:
Plant diversity has been shown to influence the water cycle of forest ecosystems by differences in water consumption and the associated effects on groundwater recharge. However, the effects of biodiversity on soil water fluxes remain poorly understood for native tree species plantations in the tropics. Therefore, we estimated soil water fluxes and assessed the effects of tree species and diversity on these fluxes in an experimental native tree species plantation in Sardinilla (Panama). The study was conducted during the wet season 2008 on plots of monocultures and mixtures of three or six tree species. Rainfall and soil water content were measured and evapotranspiration was estimated with the Penman-Monteith equation. Soil water fluxes were estimated using a simple soil water budget model considering water input, output, and soil water and groundwater storage changes and in addition, were simulated using the physically based one-dimensional water flow model Hydrus-1D. In general, the Hydrus simulation did not reflect the observed pressure heads, in that modeled pressure heads were higher compared to measured ones. On the other hand, the results of the water balance equation (WBE) reproduced observed water use patterns well. In monocultures, the downward fluxes through the 200 cm-depth plane were highest below Hura crepitans (6.13 mm day−1) and lowest below Luehea seemannii (5.18 mm day−1). The average seepage rate in monocultures (±SE) was 5.66 ± 0.18 mm day−1, and therefore, significantly higher than below six-species mixtures (5.49 ± 0.04 mm day−1) according to overyielding analyses. The three-species mixtures had an average seepage rate of 5.63 ± 0.12 mm day−1 and their values did not differ significantly from the average values of the corresponding species in monocultures. Seepage rates were driven by the transpiration of the varying biomass among the plots (r = 0.61, p = 0.017). Thus, a mixture of trees with different growth rates resulted in moderate seepage rates compared to monocultures of either fast growing or slow growing tree species. Our results demonstrate that tree-species specific biomass production and tree diversity are important controls of seepage rates in the Sardinilla plantation during the wet season.