20 resultados para Extended spectrum
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
During the past decade, extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae have become a matter of great concern in human medicine. ESBL-producing strains are found in the community, not just in hospital-associated patients, which raises a question about possible reservoirs. Recent studies describe the occurrence of ESBL-producing Enterobacteriaceae in meat, fish, and raw milk; therefore, the impact of food animals as reservoirs for and disseminators of such strains into the food production chain must be assessed. In this pilot study, fecal samples of 59 pigs and 64 cattle were investigated to determine the occurrence of ESBL-producing Enterobacteriaceae in farm animals at slaughter in Switzerland. Presumptive-positive colonies on Brilliance ESBL agar were subjected to identification and antibiotic susceptibility testing including the disc diffusion method and E-test ESBL strips. As many as 15.2% of the porcine and 17.1% of the bovine samples, predominantly from calves, yielded ESBL producers. Of the 21 isolated strains, 20 were Escherichia coli, and one was Citrobacter youngae. PCR analysis revealed that 18 strains including C. youngae produced CTX-M group 1 ESBLs, and three strains carried genes encoding for CTX-M group 9 enzymes. In addition, eight isolates were PCR positive for TEM beta-lactamase, but no bla(SHV) genes were detected. Pulsed-field gel electrophoresis showed a high genetic diversity within the strains. The relatively high rates of occurrence of ESBLproducing strains in food animals and the high genetic diversity among these strains indicate that there is an established reservoir of these organisms in farm animals. Further studies are necessary to assess future trends.
Resumo:
Studies about transmission rates of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in hospitals and households are scarce.
Resumo:
The blaESBL and blaAmpC genes in Enterobacteriaceae are spread by plasmid-mediated integrons, insertion sequences, and transposons, some of which are homologous in bacteria from food animals, foods, and humans. These genes have been frequently identified in Escherichia coli and Salmonella from food animals, the most common being blaCTX-M-1, blaCTX-M-14, and blaCMY-2. Identification of risk factors for their occurrence in food animals is complex. In addition to generic antimicrobial use, cephalosporin usage is an important risk factor for selection and spread of these genes. Extensive international trade of animals is a further risk factor. There are no data on the effectiveness of individual control options in reducing public health risks. A highly effective option would be to stop or restrict cephalosporin usage in food animals. Decreasing total antimicrobial use is also of high priority. Implementation of measures to limit strain dissemination (increasing farm biosecurity, controls in animal trade, and other general postharvest controls) are also important.
Resumo:
OBJECTIVES Resistance to extended-spectrum cephalosporins (ESCs) in Escherichia coli can be due to the production of ESBLs, plasmid-mediated AmpCs (pAmpCs) or chromosomal AmpCs (cAmpCs). Information regarding type and prevalence of β-lactamases, clonal relations and plasmids associated with the bla genes for ESC-R E. coli (ESC-R-Ec) detected in Switzerland is lacking. Moreover, data focusing on patients referred to the specialized outpatient clinics (SOCs) are needed. METHODS We analysed 611 unique E. coli isolated during September-December 2011. ESC-R-Ec were studied with microarrays, PCR/DNA sequencing for blaESBLs, blapAmpCs, promoter region of blacAmpC, IS elements, plasmid incompatibility group, and also implementing transformation, aIEF, rep-PCR and MLST. RESULTS The highest resistance rates were observed in the SOCs, whereas those in the hospital and community were lower (e.g. quinolone resistance of 22.6%, 17.2% and 9.0%, respectively; P = 0.003 for SOCs versus community). The prevalence of ESC-R-Ec in the three settings was 5.3% (n = 11), 7.8% (n = 22) and 5.7% (n = 7), respectively. Thirty isolates produced CTX-M ESBLs (14 were CTX-M-15), 5 produced CMY-2 pAmpC and 5 hyper-expressed cAmpCs due to promoter mutations. Fourteen isolates were of sequence type 131 (ST131; 10 with CTX-M-15). blaCTX-M and blaCMY-2 were associated with an intact or truncated ISEcp1 and were mainly carried by IncF, IncFII and IncI1plasmids. CONCLUSIONS ST131 producing CTX-M-15 is the predominant clone. The prevalence of ESC-R-Ec (overall 6.5%) is low, but an unusual relatively high frequency of AmpC producers (25%) was noted. The presence of ESC-R-Ec in the SOCs and their potential ability to be exchanged between hospital and community should be taken into serious consideration.
Resumo:
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Resumo:
Increasing trends for invasive infections with extended-spectrum cephalosporin-resistant (ESC-R) Enterobacteriaceae have been described in many countries worldwide. However, data on the rates of ESC-R isolates in non-invasive infections and in the outpatient setting are scarce. We used a laboratory-based nationwide surveillance system to compare temporal trends of ESC-R rates in Escherichia coli and Klebsiella pneumoniae for in- and outpatients in Switzerland. Our data showed a significant increase in ESC-R rates from 1% to 5.8% in E. coli (p<0.001) and from 1.1% to 4.4% in K. pneumoniae (p=0.002) during an eight-year period (2004–2011). For E. coli, the increase was significantly higher in inpatients (from 1.2% to 6.6%), in patients residing in eastern Switzerland (from 1.0% to 6.2%), in patients older than 45 years (from 1.2% to 6.7%), and in male patients (from 1.2% to 8.1%). While the increase in inpatients was linear (p<0.001) for E. coli, the increase of ESC R K. pneumoniae isolates was the result of multiple outbreaks in several institutions. Notably, an increasing proportion of ESC-R E. coli was co-resistant to both trimethoprim-sulfamethoxazole and quinolones (42% in 2004 to 49.1% in 2011, p=0.009), further limiting the available oral therapeutic options.
Resumo:
BACKGROUND International travel contributes to the worldwide spread of multidrug resistant Gram-negative bacteria. Rates of travel-related faecal colonization with extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae vary for different destinations. Especially travellers returning from the Indian subcontinent show high colonization rates. So far, nothing is known about region-specific risk factors for becoming colonized. METHODS An observational prospective multicentre cohort study investigated travellers to South Asia. Before and after travelling, rectal swabs were screened for third-generation cephalosporin- and carbapenem-resistant Enterobacteriaceae. Participants completed questionnaires to identify risk factors for becoming colonized. Covariates were assessed univariately, followed by a multivariate regression. RESULTS Hundred and seventy persons were enrolled, the largest data set on travellers to the Indian subcontinent so far. The acquired colonization rate with ESBL-producing Escherichia coli overall was 69.4% (95% CI 62.1-75.9%), being highest in travellers returning from India (86.8%; 95% CI 78.5-95.0%) and lowest in travellers returning from Sri Lanka (34.7%; 95% CI 22.9-48.7%). Associated risk factors were travel destination, length of stay, visiting friends and relatives, and eating ice cream and pastry. CONCLUSIONS High colonization rates with ESBL-producing Enterobacteriaceae were found in travellers returning from South Asia. Though risk factors were identified, a more common source, i.e. environmental, appears to better explain the high colonization rates.
Resumo:
We evaluated the pet food contained in thirty packages as potential origin of extended-spectrum cephalosporin-resistant Gram-negative organisms and β-lactamase genes (bla). Alive bacteria were not detected by selective culture. However, PCR investigations on food DNA extracts indicated that samples harbored blaCTX-M-15 (53.3%), blaCMY-4 (20%), and blaVEB-4-like (6.7%). Particularly worrisome was the presence of blaOXA-48-like carbapenemases (13.3%). Original pet food ingredients and/or the production process were highly contaminated with bacteria carrying clinically relevant acquired bla genes.
Resumo:
Cefepime is frequently prescribed to treat infections caused by AmpC-producing Gram-negative bacteria. CMY-2 is the most common plasmid-mediated AmpC (pAmpC) β-lactamase. Unfortunately, CMY variants conferring enhanced cefepime resistance are reported. Here, we describe the evolution of CMY-2 to an extended-spectrum AmpC (ESAC) in clonally identical E. coli isolates obtained from a patient. The CMY-2-producing E. coli (CMY-2-Ec) was isolated from a wound. Thirty days later, one CMY-33-producing E. coli (CMY-33-Ec) was detected in bronchoalveolar lavage. Two weeks before the isolation of CMY-33-Ec, the patient received cefepime.CMY-33-Ec and CMY-2-Ec were identical by rep-PCR, being of hyperepidemic ST131, but showed different β-lactam MICs (e.g., cefepime 16 vs. ≤0.5 μg/ml). Identical CMY-2-Ec isolates were also found in a rectal swab. CMY-33 differs from CMY-2 by a Leu293-Ala294 deletion. Expressed in E. coli DH10B, both CMYs conferred resistance to ceftazidime (≥256 μg/ml), but cefepime MICs were higher for CMY-33 than CMY-2 (8 vs. 0.25 μg/ml). The kcat/Km or kinact/KI (μM(-1) s(-1)) indicated that CMY-33 possesses an ESBL-like spectrum compared to CMY-2 (cefoxitin: 0.2 vs. 0.4; ceftazidime: 0.2 vs. not measurable; cefepime: 0.2 vs. not measurable; tazobactam 0.0018 vs. 0.0009). Using molecular modeling, we show that a widened active site (∼4 Å shift) may play a significant role in enhancing cefepime hydrolysis. This is the first in vivo demonstration of a pAmpC that under cephalosporin treatment expands its substrate spectrum resembling an ESBL. The prevalence of CMY-2-Ec isolates is rapidly increasing worldwide, therefore awareness that cefepime treatment may select for resistant isolates is critical.
Resumo:
INTRODUCTION Extended-spectrum beta-lactamases (ESBL) and AmpC beta-lactamases (AmpC) are of concern for veterinary and public health because of their ability to cause treatment failure due to antimicrobial resistance in Enterobacteriaceae. The main objective was to assess the relative contribution (RC) of different types of meat to the exposure of consumers to ESBL/AmpC and their potential importance for human infections in Denmark. MATERIAL AND METHODS The prevalence of each genotype of ESBL/AmpC-producing E. coli in imported and nationally produced broiler meat, pork and beef was weighted by the meat consumption patterns. Data originated from the Danish surveillance program for antibiotic use and antibiotic resistance (DANMAP) from 2009 to 2011. DANMAP also provided data about human ESBL/AmpC cases in 2011, which were used to assess a possible genotype overlap. Uncertainty about the occurrence of ESBL/AmpC-producing E. coli in meat was assessed by inspecting beta distributions given the available data of the genotypes in each type of meat. RESULTS AND DISCUSSION Broiler meat represented the largest part (83.8%) of the estimated ESBL/AmpC-contaminated pool of meat compared to pork (12.5%) and beef (3.7%). CMY-2 was the genotype with the highest RC to human exposure (58.3%). However, this genotype is rarely found in human infections in Denmark. CONCLUSION The overlap between ESBL/AmpC genotypes in meat and human E. coli infections was limited. This suggests that meat might constitute a less important source of ESBL/AmpC exposure to humans in Denmark than previously thought - maybe because the use of cephalosporins is restricted in cattle and banned in poultry and pigs. Nonetheless, more detailed surveillance data are required to determine the contribution of meat compared to other sources, such as travelling, pets, water resources, community and hospitals in the pursuit of a full source attribution model.
Resumo:
The aim of the study was to evaluate the need for active surveillance of antibiotic resistance in ambulatory infections. We measured the prevalence of antibiotic resistance in urinary tract infections (UTIs) (n = 1018) and skin infections (n = 213) diagnosed in outpatients between September 2008 and February 2009 in the Canton of Bern, Switzerland. Samples were stratified into 'solicited' (diagnostic work-up for study purpose only) and 'routine' (diagnostic work-up as part of standard care). Susceptibility patterns were compared for 463 Escherichia coli isolates from UTIs (231 solicited; 232 routine) and 87 Staphylococcus aureus isolates from skin infections (35 solicited; 52 routine). Overall, E. coli showed higher susceptibility to ampicillin, amoxicillin-clavulanic acid and norfloxacin in solicited than in routine samples. Among 15-45-year-old patients, susceptibility rates were comparable between solicited and routine samples for all antibiotics except for amoxicillin-clavulanic acid. However, among patients >45 years old, isolates from routine samples showed lower susceptibility to all β-lactams tested and quinolones than those from solicited samples. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were rare (solicited, 0.4%; routine, 1.7%; p 0.4). Susceptibility patterns of S. aureus were comparable between solicited and routine samples. Therefore, in the outpatient setting, susceptibility rates for E. coli isolates differ by indication for urinary culture and age. Surveillance based on samples taken during standard care may underestimate susceptibility rates for uncomplicated infections, especially among the elderly. Reports of resistance data should include age stratification.
Resumo:
The treatment of pneumococcal meningitis remains a major challenge, as reflected by the continued high morbidity and case fatality of the disease. The worldwide increase of penicillin-resistant pneumococci and more recently cephalosporin- and vancomycin-tolerant pneumococci has jeopardised the efficacy of standard treatments based on extended spectrum cephalosporins alone or in combination with vancomycin. This review provides a summary of newly developed antibiotics tested in the rabbit meningitis model. In particular, newer beta-lactam monotherapies (cefepime, meropenem, ertapenem), recently developed quinolones (garenoxacin, gemifloxacin, gatifloxacin, moxifloxacin) and a lipopeptide antibiotic (daptomycin) are discussed. A special emphasis is placed on the potential role of combination treatments with some of the new compounds, which are of interest based on the background of increasing resistance problems due to their often synergistic activity in the rabbit model of pneumococcal meningitis.
Resumo:
The prevalence of periodontitis and cardiovascular disease (CVD) is high. A mixed infectious biofilm etiology of periodontitis is known but not fully established in CVD. Cofactors; smoking habits, stress, ethnicity, genetics, socioeconomics and age contribute to both diseases. The objectives of this report are to summarize factors in regards to CVD and periodontitis that are clinically relevant. The hypothesis behind a relationship between the two conditions can be founded in (I) shared infections etiology, (II) shared inflammatory response, (III) epidemiological and case-control studies, and (IV) periodontal studies demonstrating improvements of CVD markers. Streptococcus species in the S. mitis group, and S. anginosus group have been identified in periodontitis and are known as pathogens in endocarditis possibly transported from the oral cavity to the heart through bacteremia during dental therapies, and tooth brushing. Other periodontal bacteria such as Porphyromonas gingivalis, Fusobacterium nucleatum and Parvimonas micra are beta-lactamase producing and may contribute to antibiotic resistance (extended spectrum beta-lactamases). Other bacteria in CVD and periodontitis include Staphylococcus aureus, and Pseudomonas aeruginosa. Chlamydia pneumoniae and P. gingivalis lipopolyysaccharide capsels share homology and induce heat-shock protein activity and a cascade of proinflammatory cytokines. Associations between periodontitis and CVD have been presented in many studies when controlling for confounders. Other studies have demonstrated that periodontal therapies increase brachial artery flow rate and reduce serum inflammatory cytokine levels. Thus, physicians caring for subjects at CVD risk should consult with dentists/periodontists. Dentists must improve their medical knowledge and also learn to consult with physicians when treating patients at CVD risk.
Resumo:
Streptomycin is used in arboriculture to control fire blight. Using sheep as a model, multidrug-resistant bacteria in mammals were found to be selected after the intentional release of streptomycin into the environment. Escherichia coli and Staphylococcus spp. were isolated from the faeces and nasal cavities, respectively, of sheep grazing on a field sprayed with streptomycin at concentrations used in orchards (test group) and on a field without streptomycin (control group). Before the application of streptomycin, the percentage of streptomycin-resistant E. coli isolates in faeces was 15.8% in the control group and 14.7% in the test group. After the application of streptomycin, the overall number of streptomycin-resistant E. coli isolates was significantly higher in the test group (39.9%) than in the control group (22.3%). Streptomycin-resistant Staphylococcus isolates were only detected after the application of streptomycin. Streptomycin resistance was frequently associated with resistance to sulfamethoxazole, ampicillin, tetracycline and chloramphenicol and less frequently to cefotaxime in E. coli, and to tetracycline, fusidic acid and tiamulin in Staphylococcus spp. This study shows that the application of low concentrations of streptomycin on grass, as occurs during the spraying of orchards, selects for multidrug-resistant nasal and enteric bacterial flora, including extended-spectrum beta-lactamase-producing E. coli.