40 resultados para Exponential and trigonometrical octoniônic functions
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Unique contributions of Big Five personality factors to academic performance in young elementary school children were explored. Extraversion and Openness (labeled “Culture” in our study) uniquely contributed to academic performance, over and above the contribution of executive functions in first and second grade children (N = 446). Well established associations between Conscientiousness and academic performance, however, could only be replicated with regard to zero-order correlations. Executive functions (inhibition, updating, and shifting), for their part, proved to be powerful predictors of academic performance. Results were to some extent dependent on the criterion with which academic performance was measured: Both personality factors had stronger effects on grades than on standardized achievement tests, whereas the opposite was true for executive functions. Finally, analyses on gender differences revealed that Extraversion and Openness/Culture played a more dominant role in girls than in boys, but only regarding grades.
Resumo:
Mutations of STAT3 underlie the autosomal dominant form of hyperimmunoglobulin E syndrome (HIES). STAT3 has critical roles in immune cells and thus, hematopoietic stem cell transplantation (HSCT), might be a reasonable therapeutic strategy in this disease. However, STAT3 also has critical functions in nonhematopoietic cells and dissecting the protean roles of STAT3 is limited by the lethality associated with germline deletion of Stat3. Thus, predicting the efficacy of HSCT for HIES is difficult. To begin to dissect the importance of STAT3 in hematopoietic and nonhematopoietic cells as it relates to HIES, we generated a mouse model of this disease. We found that these transgenic mice recapitulate multiple aspects of HIES, including elevated serum IgE and failure to generate Th17 cells. We found that these mice were susceptible to bacterial infection that was partially corrected by HSCT using wild-type bone marrow, emphasizing the role played by the epithelium in the pathophysiology of HIES.
Resumo:
Toll-like receptors are of key importance in the recognition of and response to infectious agents by cells of the innate immune system. TLR mRNA expression and TLR-mediated functions were determined in bovine macrophages (MPhi) infected with bovine viral diarrhea virus (BVDV) or stimulated with interferon-gamma (IFN-gamma) in order to see whether they are correlated under these conditions. As parameters quantitative real time RT-PCR (QRT-PCR) for TLR2, TLR3 and TLR4, NO and TNF production were measured. Triggering of bovine MPhi with bona fide TLR2 and TLR4 agonists (lipopolysaccharide, lipoteichoic acid, peptidoglycan, lipopetide) led to NO and TNF production but neither TLR3 nor TLR9 agonists (double-stranded RNA, CpG DNA) showed this effect. The mRNA expression of TLR2, TLR3 and TLR4 was neither influenced by MPhi costimulation with IFN-gamma nor by MPhi preinfection with BVDV nor by the ligands themselves. However, NO production induced by TLR2 or TLR4 agonists was strongly modulated either by IFN-gamma costimulation or BVDV preinfection. Thus costimulation of MPhi with IFN-gamma resulted in an increase of both NO synthesis and TNF expression by cells stimulated simultaneously by TLR2 or TLR4 agonists. Preinfection of bovine MPhi by BVDV resulted in upregulation of TLR2- and TLR4-mediated NO synthesis. Collectively, these data show that TLR-mediated functions may be modulated by viral infection or activation via IFN-gamma of MPhi whereas the mRNA concentrations of relevant TLR members were not significantly influenced. Thus, the amount of TLR2, TLR3 and TLR4 mRNA transcripts is stable at least under the conditions tested. More importantly, modulation of TLR-mediated responses was dissociated from mRNA expression of TLR members.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.
Resumo:
Cyclic nucleotide specific phosphodiesterases (PDEs) are pivotal regulators of cellular signaling. They are also important drug targets. Besides catalytic activity and substrate specificity, their subcellular localization and interaction with other cell components are also functionally important. In contrast to the mammalian PDEs, the significance of PDEs in protozoal pathogens remains mostly unknown. The genome of Trypanosoma brucei, the causative agent of human sleeping sickness, codes for five different PDEs. Two of these, TbrPDEB1 and TbrPDEB2, are closely similar, cAMP-specific PDEs containing two GAF-domains in their N-terminal regions. Despite their similarity, these two PDEs exhibit different subcellular localizations. TbrPDEB1 is located in the flagellum, whereas TbrPDEB2 is distributed between flagellum and cytoplasm. RNAi against the two mRNAs revealed that the two enzymes can complement each other but that a simultaneous ablation of both leads to cell death in bloodstream form trypanosomes. RNAi against TbrPDEB1 and TbrPDEB2 also functions in vivo where it completely prevents infection and eliminates ongoing infections. Our data demonstrate that TbrPDEB1 and TbrPDEB2 are essential for virulence, making them valuable potential targets for new PDE-inhibitor based trypanocidal drugs. Furthermore, they are compatible with the notion that the flagellum of T. brucei is an important site of cAMP signaling.--Oberholzer, M., Marti, G., Baresic, M., Kunz, S., Hemphill, A., Seebeck, T. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence.
Resumo:
Gap junctions are clustered channels between contacting cells through which direct intercellular communication via diffusion of ions and metabolites can occur. Two hemichannels, each built up of six connexin protein subunits in the plasma membrane of adjacent cells, can dock to each other to form conduits between cells. We have recently screened mouse and human genomic data bases and have found 19 connexin (Cx) genes in the mouse genome and 20 connexin genes in the human genome. One mouse connexin gene and two human connexin genes do not appear to have orthologs in the other genome. With three exceptions, the characterized connexin genes comprise two exons whereby the complete reading frame is located on the second exon. Targeted ablation of eleven mouse connexin genes revealed basic insights into the functional diversity of the connexin gene family. In addition, the phenotypes of human genetic disorders caused by mutated connexin genes further complement our understanding of connexin functions in the human organism. In this review we compare currently identified connexin genes in both the mouse and human genome and discuss the functions of gap junctions deduced from targeted mouse mutants and human genetic disorders.
Resumo:
BACKGROUND: Associations between periodontitis and cardiovascular diseases have been recognized. MATERIAL AND METHODS: New literature since the last European Workshop on Periodontology has been reviewed. RESULTS: The lack of reliable epidemiological data on disease prevalence makes an assessment of the associations and risks between periodontitis and cardiovascular diseases difficult. Two recent meta-analysis reports have identified associations between periodontitis and cardiovascular diseases (odds ratios: 1.1-2.2). Different surrogate markers for both disease entities, including serum biomarkers, have been investigated. Brachial artery flow-mediated dilatation, and carotid intima media thickness have in some studies been linked to periodontitis. Studies are needed to confirm early results of improvements of such surrogate markers following periodontal therapy. While intensive periodontal therapy may enhance inflammatory responses and impair vascular functions, studies are needed to assess the outcome of periodontal therapies in subjects with confirmed cardiovascular conditions. Tooth eradication may also reduce the systemic inflammatory burden of individuals with severe periodontitis. The role of confounders remain unclear. CONCLUSIONS: Periodontitis may contribute to cardiovascular disease and stroke in susceptible subjects. Properly powered longitudinal case-control and intervention trials are needed to identify how periodontitis and periodontal interventions may have an impact on cardiovascular diseases.
Resumo:
Tumor suppressor genes, such as p53, RB, the INK4-ARF family and PML, suppress malignant transformation by regulating cell cycle progression, ensuring the fidelity of DNA replication and chromosomal segregation, or by inducing apoptosis in response to potentially deleterious events. In myeloid leukemia, hematopoietic differentiation resulting from highly coordinated, stage-wise expression of myeloid transcription and soluble signaling factors is disrupted leading to a block in terminal differentiation and uncontrolled proliferation. This virtually always involves functional inactivation or genetic disruption of one or several tumor suppressor genes in order to circumvent their checkpoint control and apoptosis-inducing functions. Hence, reactivation of tumor suppressor gene function has therapeutic potential and can possibly enhance conventional cytotoxic chemotherapy. In this review, we focus on the role of different tumor suppressor genes in myeloid differentiation and leukemogenesis, and discuss implications for therapy.
Resumo:
BACKGROUND Aeromonas salmonicida subsp. salmonicida, the etiologic agent of furunculosis, is a major pathogen of fisheries worldwide. Several virulence factors have been described, but the type-three secretion system (T3SS) is recognized as having a major effect on virulence by injecting effectors directly into fish cells. In this study we used high-throughput proteomics to display the differences between in vitro secretome of A. salmonicida wild-type (wt, hypervirulent, JF2267) and T3SS-deficient (isogenic ΔascV, extremely low-virulent, JF2747) strains in exponential and stationary phases of growth. RESULTS Results confirmed the secretion of effectors AopH, AexT, AopP and AopO via T3SS, and for the first time demonstrated the impact of T3SS in secretion of Ati2, AopN and ExsE that are known as effectors in other pathogens. Translocators, needle subunits, Ati1, and AscX were also secreted in supernatants (SNs) dependent on T3SS. AopH, Ati2, AexT, AopB and AopD were in the top seven most abundant excreted proteins. EF-G, EF-Tu, DnaK, HtpG, PNPase, PepN and MdeA were moderately secreted in wt SNs and predicted to be putative T3 effectors by bioinformatics. Pta and ASA_P5G088 were increased in wt SNs and T3-associated in other bacteria. Ten conserved cytoplasmic proteins were more abundant in wt SNs than in the ΔascV mutant, but without any clear association to a secretion system. T1-secreted proteins were predominantly found in wt SNs: OmpAI, OmpK40, DegQ, insulinase ASA_0716, hypothetical ASA_0852 and ASA_3619. Presence of T3SS components in pellets was clearly decreased by ascV deletion, while no impact was observed on T1- and T2SS. Our results demonstrated that the ΔascV mutant strain excreted well-described (VapA, AerA, AerB, GCAT, Pla1, PlaC, TagA, Ahe2, GbpA and enolase) and yet uncharacterized potential toxins, adhesins and enzymes as much as or even more than the wt strain. Other putative important virulence factors were not detected. CONCLUSIONS We demonstrated the whole in vitro secretome and T3SS repertoire of hypervirulent A. salmonicida. Several toxins, adhesins and enzymes that are not part of the T3SS secretome were secreted to a higher extent in the extremely low-virulent ΔascV mutant. All together, our results show the high importance of an intact T3SS to initiate the furunculosis and offer new information about the pathogenesis.
Resumo:
Cognitive Remediation approaches have proven to be effective in enhancing cognitive functions and psychosocial outcomes in multi-episode schizophrenia patients. However, there is a paucity of studies evaluating Cognitive Remediation in first-episode psychosis patients and in those symptomatically at-risk for psychosis. This is despite the growing evidence that impairments in neuro- and social-cognitive functions are already present in early psychosis and even in at-risk mental states and are important predictors of poor outcome, including transition to psychosis. Moreover, Cognitive Remediation applied at younger ages and at earlier stages of schizophrenia yielded greater cognitive and functional gains. Therefore, Cognitive Remediation may be especially appropriate for early intervention. Against this background, we will review and discuss the efficacy of current Cognitive Remediation approaches in early psychosis and in at-risk mental states. Furthermore, we will present novel interventions that are tailored to the specific needs and developmental tasks of patients at-risk for psychosis and aim at improving social and self-referential cognitions as well as interpersonal skills
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.