14 resultados para Expo-led growth
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
During pregnancy, trophoblasts grow to adapt the feto-maternal unit to fetal requirements. Aldosterone and cortisol levels increase, the latter being inactivated by a healthy placenta. By contrast, preeclamptic placental growth is reduced while aldosterone levels are low and placental cortisol tissue levels are high due to improper deactivation. Aldosterone acts as a growth factor in many tissues, whereas cortisol inhibits growth. We hypothesized that in preeclampsia low aldosterone and enhanced cortisol availability might mutually affect placental growth and function. Proliferation of cultured human trophoblasts was time- and dose-dependently increased with aldosterone (P < 0.04 to P < 0.0001) and inhibited by spironolactone and glucocorticoids (P < 0.01). Mineralo- and glucocorticoid receptor expression and activation upon agonist stimulation was verified by visualization of nuclear translocation of the receptors. Functional aldosterone deficiency simulated in pregnant mice by spironolactone treatment (15 μg/g body weight/day) led to a reduced fetal umbilical blood flow (P < 0.05). In rat (P < 0.05; R(2) = 0.2055) and human (X(2) = 3.85; P = 0.0249) pregnancy, placental size was positively related to plasma aldosterone. Autocrine production of these steroid hormones was excluded functionally and via the absence of specific enzymatic transcripts for CYP11B2 and CYP11B1. In conclusion, activation of mineralocorticoid receptors by maternal aldosterone appears to be required for trophoblast growth and a normal feto-placental function. Thus, low aldosterone levels and enhanced cortisol availability may be one explanation for the reduced placental size in preeclampsia and related disorders.
Vascular endothelial growth factor-A and aldosterone: relevance to normal pregnancy and preeclampsia
Resumo:
Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.
Resumo:
PURPOSE: The aim of the study was to evaluate the clinical outcomes of secondary functional cheilorhinoplasty of residual lip and nasal deformities caused by muscular deficiency in cleft patients. PATIENTS AND METHODS: During a 4-year period, 31 patients underwent cheilorhinoplasty, including complete reopening of the cleft borders and differentiated mimic muscle reorientation. In 21 patients, remarkable residual clefts of the anterior palate were also closed. Simultaneous alveolar bone grafting was performed in 15 patients. The minimum follow-up was 1 year. Cosmetic features evaluated were spontaneous facial appearance and changes in position of the nasal floor and the philtrum. The width of the alar base was measured. For functional outcomes, deficiency during mimic movements was evaluated, using standardized photographs taken preoperatively and postoperatively. The final results, judged according to defined criteria with several clinical factors, were compared. RESULTS: Cosmetic and functional improvement was achieved in all patients. In young patients (aged 4 to 9 years), the improvements were noteworthy. There were no differences in outcomes between the groups with and without simultaneous grafting, except for unilateral cases with minor muscular deficiency, in whom bone grafting before cheilorhinoplasty led to better results. CONCLUSION: In cases of major muscular deficiency, early cheilorhinoplasty should be performed at age 7 years, without waiting for the usual timing of bone grafting. In minor and moderate cases, the operation can ideally be done in combination with bone grafting.
Resumo:
Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.
Growth hormone replacement in adults with growth hormone deficiency: assessment of current knowledge
Resumo:
The recent availability of recombinant human growth hormone (GH) has led to intense investigation of the consequences of adult GH deficiency (GHD) and the effects of GH replacement. These studies have led to the identification of a characteristic syndrome of GHD consisting of decreased mood and well-being, with alterations in body composition and substrate metabolism. In both placebo-controlled and open studies, GH replacement therapy has consistently been shown to reverse or correct these features. Whether long-term GH replacement will result in a reduction of osteoporotic fractures, cardiovascular morbidity and mortality is not yet known. To date, no permanent serious adverse effects have been associated with GH replacement in GHD, and although currently expensive, it is anticipated that GH replacement will become routine in the treatment of the severely hypopituitary adult.
Resumo:
The availability of recombinant human growth hormone (GH) has resulted in investigation of the role of GH in adulthood and the effects of GH replacement in the GH-deficient adult. These studies have led to the recognition of a specific syndrome of GH-deficiency, characterized by symptoms, signs and investigative findings. Adults with long-standing growth hormone deficiency are often overweight, have altered body composition, with reduced lean body mass (LBM), increased fat mass (FM), reduced total body water and reduced bone mass. In addition, there is reduced physical and cardiac performance, altered substrate metabolism and an abnormal lipid profile predisposing to the development of cardiovascular disease. Adults with GH deficiency report reduced psychological well-being and quality of life. These changes may contribute to the morbidity and premature mortality observed in hypopituitary adults on conventional replacement therapy. GH treatment restores LBM, reduces FM, increases total body water and increases bone mass. Following GH therapy, increases are recorded in exercise capacity and protein synthesis, and "favourable" alterations occur in plasma lipids. In addition, psychological well-being and quality of life improve with replacement therapy. GH is well tolerated; adverse effects are largely related to fluid retention and respond to dose adjustment. It is likely that GH replacement will become standard therapy for the hypopituitary adult in the near future. The benefits of GH replacement in the GH-deficient adult have been unequivocally demonstrated in studies lasting up to 3 years. The results of longer term studies are awaited to determine whether these benefits are sustained over a lifetime.
Resumo:
Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.
Resumo:
This working report gives an overview of the Individual Project 12 “Vulnerability and growth. Developmental dynamics and differential effects of the loss of an intimate partner in the second half of life” of the Swiss National Centre of Competence in Research LIVES led by Pasqualina Perrig-Chiello, University of Bern. This longitudinal and interdisciplinary project aims at examining vulnerability and personal growth after a critical life event, namely the break-up of a long-term intimate relationship in the second half of life, be it due to divorce or due to bereavement. In this report we present details about the rationale, the main research questions, the hypotheses and the methods of the study. Special attention is given to the methodological approach. The authors give a first sample description and report on the validity of the data by comparing the sample with Swiss Labour Force Survey and Swiss Health Survey data.
Resumo:
In a forest grove at Korup dominated by the ectomycorrhizal species Microberlinia bisulcata, an experiment tested whether phosphorus (P) was a limiting nutrient. P-fertilization of seven subplots 1995-97 was compared with seven controls. It led to large increases in soil P concentrations. Trees were measured in 1995 and 2000. M. bisulcata and four other species were transplanted into the treatments, and a wild cohort of M. bisulcata seedlings was followed in both. Leaf litter fall from trees and seedlings were analysed for nutrients. Growth of trees was not affected by added P. Transplanted seedlings survived better in the controls than added-P subplots: they did not grow better with added-P.M. bisulcata wildlings survived slightly better in the added-P subplots in yr 1 but not later. Litter fall and transplanted survivors had much higher concentrations of P (not N) in the added-P than control subplots. Under current conditions, it appears that P does not limit growth of trees or hinder seedling establishment, especially of M. bisculcata, in these low-P grove soils.
Resumo:
The phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently activated in human cancer and plays a crucial role in glioblastoma biology. We were interested in gaining further insight into the potential of targeting PI3K isoforms as a novel anti-tumor approach in glioblastoma. Consistent expression of the PI3K catalytic isoform PI3K p110α was detected in a panel of glioblastoma patient samples. In contrast, PI3K p110β expression was only rarely detected in glioblastoma patient samples. The expression of a module comprising the epidermal growth factor receptor (EGFR)/PI3K p110α/phosphorylated ribosomal S6 protein (p-S6) was correlated with shorter patient survival. Inhibition of PI3K p110α activity impaired the anchorage-dependent growth of glioblastoma cells and induced tumor regression in vivo. Inhibition of PI3K p110α or PI3K p110β also led to impaired anchorage-independent growth, a decreased migratory capacity of glioblastoma cells, and reduced the activation of the Akt/mTOR pathway. These effects were selective, because targeting of PI3K p110δ did not result in a comparable impairment of glioblastoma tumorigenic properties. Together, our data reveal that drugs targeting PI3K p110α can reduce growth in a subset of glioblastoma tumors characterized by the expression of EGFR/PI3K p110α/p-S6.
Resumo:
Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body ß-hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.
Resumo:
BACKGROUND Aggregation of growth hormone (GH) required for its proper storage in granules is facilitated by zinc (Zn(2+)) transported by specific zinc transporters in and out of the regulated secretory pathway. Slc30a5 (ZnT5) was reported to have the highest gene expression among all zinc transporters in primary mouse pituitary cells while ZnT5-null mice presented with abnormal bone development and impaired growth compared to wild-type counterparts. METHODS In vitro studies performed in GH3 cells, a rat pituitary cell line that endogenously produces rat GH (rGH), included analysis of: cytoplasmic Zn(2+) pool changes after altering rSlc30a5 expression (luciferase assay), rZnT5 association with different compartments of the regulated secretory pathway (confocal microscopy), and the rGH secretion after rSlc30a5 knock-down (Western blot). RESULTS Confocal microscopy demonstrated high co-localization of rZnT5 with ER and Golgi (early secretory pathway) while siRNA-mediated knock-down of rSlc30a5 gene expression led to a significant reduction in rGH secretion. Furthermore, altered expression of rSlc30a5 (knock-down/overexpression) evoked changes in the cytoplasmic Zn(2+) pool indicating its important role in mediating Zn(2+) influx into intracellular compartments of the regulated secretory pathway. CONCLUSION Taken together, these results suggest that ZnT5 might play an important role in regulated GH secretion that is much greater than previously anticipated.
Resumo:
BACKGROUND Intrauterine growth restriction (IUGR) occurs in up to 10% of pregnancies and is considered as a major risk to develop various diseases in adulthood, such as cardiovascular diseases, insulin resistance, hypertension or end stage kidney disease. Several IUGR models have been developed in order to understand the biological processes linked to fetal growth retardation, most of them being rat or mouse models and nutritional models. In order to reproduce altered placental flow, surgical models have also been developed, and among them bilateral uterine ligation has been frequently used. Nevertheless, this model has never been developed in the mouse, although murine tools display multiple advantages for biological research. The aim of this work was therefore to develop a mouse model of bilateral uterine ligation as a surgical model of IUGR. RESULTS In this report, we describe the set up and experimental data obtained from three different protocols (P1, P2, P3) of bilateral uterine vessel ligation in the mouse. Ligation was either performed at the cervical end of each uterine horn (P1) or at the central part of each uterine horn (P2 and P3). Time of surgery was E16 (P1), E17 (P2) or E16.5 (P3). Mortality, maternal weight and abortion parameters were recorded, as well as placentas weights, fetal resorption, viability, fetal weight and size. Results showed that P1 in test animals led to IUGR but was also accompanied with high mortality rate of mothers (50%), low viability of fetuses (8%) and high resorption rate (25%). P2 and P3 improved most of these parameters (decreased mortality and improved pregnancy outcomes; improved fetal viability to 90% and 27%, respectively) nevertheless P2 was not associated to IUGR contrary to P3. Thus P3 experimental conditions enable IUGR with better pregnancy and fetuses outcomes parameters that allow its use in experimental studies. CONCLUSIONS Our results show that bilateral uterine artery ligation according to the protocol we have developed and validated can be used as a surgical mouse model of IUGR.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.