45 resultados para Experiment data

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The T2K long-baseline neutrino oscillation experiment in Japan needs precise predictions of the initial neutrino flux. The highest precision can be reached based on detailed measurements of hadron emission from the same target as used by T2K exposed to a proton beam of the same kinetic energy of 30 GeV. The corresponding data were recorded in 2007-2010 by the NA61/SHINE experiment at the CERN SPS using a replica of the T2K graphite target. In this paper details of the experiment, data taking, data analysis method and results from the 2007 pilot run are presented. Furthermore, the application of the NA61/SHINE measurements to the predictions of the T2K initial neutrino flux is described and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: According to the theoretical model of Cranach, Ochsenbein, and Valach (1986) understanding group actions needs consideration of aspects at both the group level and the level of individual members. For example individual action units constituting group actions are motivated at the individual level while potentially being affected by characteristics of the group. Theoretically, group efficacy beliefs could be a part of this motivational process as they are an individual’s cognitive contents about group-level abilities to perform well in a specific task. Positive relations between group level efficacy-beliefs and group performance have been reported and Bandura and Locke (2003) argue that this relationship is being mediated by motivational processes and goal setting. The aims of this study were a) to examine the effects of group characteristics on individual performance motivation and b) to test if those are mediated by individual group efficacy beliefs. Methods: Forty-seven students (M=22.83 years, SD=2.83, 34% women) of the university of Berne participated in this scenario based experiment. Data were collected on two collection points. Subjects were provided information about fictive team members with whom they had to perform a group triathlon. Three values (low, medium, high) of the other team members’ abilities to perform in their parts of the triathlon (swimming and biking respectively) were combined in a 3x3 full factorial design (Anderson, 1982) yielding nine groups. Subjects were asked how confident they were that the teams would perform well in the task (individual group efficacy beliefs), and to provide information about their motivation to perform at their best in the respective group contexts (performance motivation). Multilevel modeling (Mplus) was used to estimate the effects of the factors swim and bike, and the context-varying covariate individual group efficacy beliefs on performance motivation. Further analyses were undertaken to test if the effects of group contexts on performance motivation are mediated by individual group efficacy beliefs. Results: Significant effects were reported for both the group characteristics (βswim = 7.86; βbike = 8.57; both p < .001) and the individual group efficacy beliefs (βigeb; .40, p < .001) on performance motivation. The subsequent mediation model indicated that the effects of group characteristics on performance motivation were partly mediated by the individual group efficacy beliefs of the subjects with significant mediation effects for both factors swim and bike. Discussion/Conclusion: The results of the study provide further support for the motivational character of efficacy beliefs and point out a mechanism by which team characteristics influence performance relevant factors at the level of individual team members. The study indicates that high team abilities lead to augmented performance motivation, adding a psychological advantage to teams already high on task relevant abilities. Future investigations will be aiming at possibilities to keep individual performance motivation high in groups with low task relevant abilities. One possibility could be the formulation of individual task goals. References: Anderson, N. H. (1982). Methods of information integration theory. New York: Academic Press. Bandura, A. & Locke, E. A. (2003). Negative self-efficacy and goal effects revisited. Journal of Applied Psychology, 88, 87-99. Cranach, M. von, Ochsenbein, G. & Valach, L. (1986). The group as a self-active system: Outline of a theory of group action. European Journal of Social Psychology, 16, 193-229.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Web surveys are becoming increasingly popular in survey research including stated preference surveys. Compared with face-to-face, telephone and mail surveys, web surveys may contain a different and new source of measurement error and bias: the type of device that respondents use to answer the survey questions. This is the first study that tests whether the use of mobile devices, tablets or smartphones, affects survey characteristics and stated preferences in a web-based choice experiment. The web survey on expanding renewable energy production in Germany was carried out with 3182 respondents, of which 12% used a mobile device. Propensity score matching is used to account for selection bias in the use of mobile devices for survey completion. We find that mobile device users spent more time than desktop/laptop users to answer the survey. Yet, desktop/laptop users and mobile device users do not differ in acquiescence tendency as an indicator of extreme response patterns. For mobile device users only, we find a negative correlation between screen size and interview length and a positive correlation between screen size and acquiescence tendency. In the choice experiment data, we do not find significant differences in the tendency to choose the status quo option and scale between both subsamples. However, some of the estimates of implicit prices differ, albeit not in a unidirectional fashion. Model results for mobile device users indicate a U-shaped relationship between error variance and screen size. Together, the results suggest that using mobile devices is not detrimental to survey quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Claystones are considered worldwide as barrier materials for nuclear waste repositories. In the Mont Terri underground research laboratory (URL), a nearly 4-year diffusion and retention (DR) experiment has been performed in Opalinus Clay. It aimed at (1) obtaining data at larger space and time scales than in laboratory experiments and (2) under relevant in situ conditions with respect to pore water chemistry and mechanical stress, (3) quantifying the anisotropy of in situ diffusion, and (4) exploring possible effects of a borehole-disturbed zone. The experiment included two tracer injection intervals in a borehole perpendicular to bedding, through which traced artificial pore water (APW) was circulated, and a pressure monitoring interval. The APW was spiked with neutral tracers (HTO, HDO, H2O-18), anions (Br, I, SeO4), and cations (Na-22, Ba-133, Sr-85, Cs-137, Co-60, Eu-152, stable Cs, and stable Eu). Most tracers were added at the beginning, some were added at a later stage. The hydraulic pressure in the injection intervals was adjusted according to the measured value in the pressure monitoring interval to ensure transport by diffusion only. Concentration time-series in the APW within the borehole intervals were obtained, as well as 2D concentration distributions in the rock at the end of the experiment after overcoring and subsampling which resulted in �250 samples and �1300 analyses. As expected, HTO diffused the furthest into the rock, followed by the anions (Br, I, SeO4) and by the cationic sorbing tracers (Na-22, Ba-133, Cs, Cs-137, Co-60, Eu-152). The diffusion of SeO4 was slower than that of Br or I, approximately proportional to the ratio of their diffusion coefficients in water. Ba-133 diffused only into �0.1 m during the �4 a. Stable Cs, added at a higher concentration than Cs-137, diffused further into the rock than Cs-137, consistent with a non-linear sorption behavior. The rock properties (e.g., water contents) were rather homogeneous at the centimeter scale, with no evidence of a borehole-disturbed zone. In situ anisotropy ratios for diffusion, derived for the first time directly from field data, are larger for HTO and Na-22 (�5) than for anions (�3�4 for Br and I). The lower ionic strength of the pore water at this location (�0.22 M) as compared to locations of earlier experiments in the Mont Terri URL (�0.39 M) had no notable effect on the anion accessible pore fraction for Cl, Br, and I: the value of 0.55 is within the range of earlier data. Detailed transport simulations involving different codes will be presented in a companion paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The diffusion of radionuclides is an important safety aspect for nuclear waste disposal in argillaceous host rocks. A long-term diffusion experiment, termed DI-A, is being carried out at the Mont Terri Rock Laboratory in the Opalinus Clay formation. The aim of this experiment is the understanding of the migration and sorption behaviour of cationic and anionic species in consolidated clays. This study reports on the experimental layout and the first results obtained from the DI-A experiment, which include the investigation of HTO, Na-22(+), Cs+, and I- migration during a period of 1 year by analysing these tracers in the water circulating in the borehole. In addition, results obtained from through-diffusion experiments on small-sized samples with HTO, I-, and Cl-36(-) are presented. The decrease of tracer concentrations in the borehole is fastest for Cs+, followed by Na-22(+), HTO, and finally I-. The chemical composition of the artificial pore water in the borehole shows very little variation with time, thus indicating almost no chemical disturbance around the borehole. Through-diffusion experiments in the laboratory that were performed parallel to the bedding plane with two different methods yielded effective diffusion coefficients for HTO of 4-5 X 10(-11) m(2) s(-1) and significantly lower ones for anions Cl- and I- (0.7-1.6 X 10(-11) m(2) s(-1)). The results indicate the importance of anion exclusion effects arising from the negatively charged clay surfaces. Furthermore, they demonstrate the anisotropic diffusion properties of the clay formation with significantly increased diffusion rates parallel to bedding relative to the perpendicular direction. The tracer data of the in situ experiment were successfully described with 2D diffusion models using diffusion and sorption parameters obtained from the above mentioned and other laboratory studies. The modelling results indicate that HTO and I- diffused with no retardation. The retardation of Na+ and Cs+ could be described by empirical sorption expressions from previously derived batch sorption (Cs+) or diffusion (Na+) experiments. Overall, the obtained results demonstrate the feasibility of the technical concept to study the diffusion of nonsorbing and sorbing tracers in consolidated clays. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In several extensions of the Standard Model, the top quark can decay into a bottom quark and a light charged Higgs boson H+, t -> bH(+), in addition to the Standard Model decay t -> bW. Since W bosons decay to the three lepton generations equally, while H+ may predominantly decay into tau nu, charged Higgs bosons can be searched for using the violation of lepton universality in top quark decays. The analysis in this paper is based on 4.6 fb(-1) of proton-proton collision data at root s = 7 TeV collected by the ATLAS experiment at the Large Hadron Collider. Signatures containing leptons (e or mu) and/or a hadronically decaying tau (tau(had)) are used. Event yield ratios between e+ tau(had) and e + mu, as well as between mu + tau(had) and mu + e, final states are measured in the data and compared to predictions from simulations. This ratio-based method reduces the impact of systematic uncertainties in the analysis. No significant deviation from the Standard Model predictions is observed. With the assumption that the branching fraction B(H+ -> tau nu) is 100%, upper limits in the range 3.2%-4.4% can be placed on the branching fraction B(t -> bH(+)) for charged Higgs boson masses m(H+) in the range 90-140GeV. After combination with results from a search for charged Higgs bosons in t (t) over bar decays using the tau(had) + jets final state, upper limits on B(t -> bH(+)) can be set in the range 0.8%-3.4%, for m(H+) in the range 90-160GeV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biodiversity is rapidly declining, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite numerous studies about nitrogen-cycling in forest ecosystems, many uncertainties remain, especially regarding the longer-term nitrogen accumulation. To contribute to filling this gap, the dynamic process-based model TRACE, with the ability to simulate 15N tracer redistribution in forest ecosystems was used to study N cycling processes in a mountain spruce forest of the northern edge of the Alps in Switzerland (Alptal, SZ). Most modeling analyses of N-cycling and C-N interactions have very limited ability to determine whether the process interactions are captured correctly. Because the interactions in such a system are complex, it is possible to get the whole-system C and N cycling right in a model without really knowing if the way the model combines fine-scale interactions to derive whole-system cycling is correct. With the possibility to simulate 15N tracer redistribution in ecosystem compartments, TRACE features a very powerful tool for the validation of fine-scale processes captured by the model. We first adapted the model to the new site (Alptal, Switzerland; long-term low-dose N-amendment experiment) by including a new algorithm for preferential water flow and by parameterizing of differences in drivers such as climate, N deposition and initial site conditions. After the calibration of key rates such as NPP and SOM turnover, we simulated patterns of 15N redistribution to compare against 15N field observations from a large-scale labeling experiment. The comparison of 15N field data with the modeled redistribution of the tracer in the soil horizons and vegetation compartments shows that the majority of fine-scale processes are captured satisfactorily. Particularly, the model is able to reproduce the fact that the largest part of the N deposition is immobilized in the soil. The discrepancies of 15N recovery in the LF and M soil horizon can be explained by the application method of the tracer and by the retention of the applied tracer by the well developed moss layer, which is not considered in the model. Discrepancies in the dynamics of foliage and litterfall 15N recovery were also observed and are related to the longevity of the needles in our mountain forest. As a next step, we will use the final Alptal version of the model to calculate the effects of climate change (temperature, CO2) and N deposition on ecosystem C sequestration in this regionally representative Norway spruce (Picea abies) stand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C. dissolved inorganic C and SO(4) concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of clay surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Independent component analysis (ICA) or seed based approaches (SBA) in functional magnetic resonance imaging blood oxygenation level dependent (BOLD) data became widely applied tools to identify functionally connected, large scale brain networks. Differences between task conditions as well as specific alterations of the networks in patients as compared to healthy controls were reported. However, BOLD lacks the possibility of quantifying absolute network metabolic activity, which is of particular interest in the case of pathological alterations. In contrast, arterial spin labeling (ASL) techniques allow quantifying absolute cerebral blood flow (CBF) in rest and in task-related conditions. In this study, we explored the ability of identifying networks in ASL data using ICA and to quantify network activity in terms of absolute CBF values. Moreover, we compared the results to SBA and performed a test-retest analysis. Twelve healthy young subjects performed a fingertapping block-design experiment. During the task pseudo-continuous ASL was measured. After CBF quantification the individual datasets were concatenated and subjected to the ICA algorithm. ICA proved capable to identify the somato-motor and the default mode network. Moreover, absolute network CBF within the separate networks during either condition could be quantified. We could demonstrate that using ICA and SBA functional connectivity analysis is feasible and robust in ASL-CBF data. CBF functional connectivity is a novel approach that opens a new strategy to evaluate differences of network activity in terms of absolute network CBF and thus allows quantifying inter-individual differences in the resting state and task-related activations and deactivations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constructing a 3D surface model from sparse-point data is a nontrivial task. Here, we report an accurate and robust approach for reconstructing a surface model of the proximal femur from sparse-point data and a dense-point distribution model (DPDM). The problem is formulated as a three-stage optimal estimation process. The first stage, affine registration, is to iteratively estimate a scale and a rigid transformation between the mean surface model of the DPDM and the sparse input points. The estimation results of the first stage are used to establish point correspondences for the second stage, statistical instantiation, which stably instantiates a surface model from the DPDM using a statistical approach. This surface model is then fed to the third stage, kernel-based deformation, which further refines the surface model. Handling outliers is achieved by consistently employing the least trimmed squares (LTS) approach with a roughly estimated outlier rate in all three stages. If an optimal value of the outlier rate is preferred, we propose a hypothesis testing procedure to automatically estimate it. We present here our validations using four experiments, which include 1 leave-one-out experiment, 2 experiment on evaluating the present approach for handling pathology, 3 experiment on evaluating the present approach for handling outliers, and 4 experiment on reconstructing surface models of seven dry cadaver femurs using clinically relevant data without noise and with noise added. Our validation results demonstrate the robust performance of the present approach in handling outliers, pathology, and noise. An average 95-percentile error of 1.7-2.3 mm was found when the present approach was used to reconstruct surface models of the cadaver femurs from sparse-point data with noise added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he physics program of the NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment at the CERN SPS consists of three subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2010) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in p+p, p+Pb interactions and nucleus-nucleus collisions, with the aim to identify the properties of the onset of deconfinement and find evidence for the critical point of strongly interacting matter. The NA61 experiment was approved at CERN in June 2007. The first pilot run was performed during October 2007. Calibrations of all detector components have been performed successfully and preliminary uncorrected spectra have been obtained. High quality of track reconstruction and particle identification similar to NA49 has been achieved. The data and new detailed simulations confirm that the NA61 detector acceptance and particle identification capabilities cover the phase space required by the T2K experiment. This document reports on the progress made in the calibration and analysis of the 2007 data.