34 resultados para Experiment Of Microgravity Fluid Mechanics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors. Over the past decade, evidence has accumulated that HAPE results from the conjunction of two major defects, augmented alveolar fluid flooding resulting from exaggerated hypoxic pulmonary hypertension, and impaired alveolar fluid clearance related to defective respiratory transepithelial sodium transport. Here, after a brief presentation of the clinical features of HAPE, we review this novel concept. We provide experimental evidence for the novel concept that impaired pulmonary endothelial and epithelial nitric oxide synthesis and/or bioavailability may represent the central underlying defect predisposing to exaggerated hypoxic pulmonary vasoconstriction and alveolar fluid flooding. We demonstrate that exaggerated pulmonary hypertension, while possibly a condition sine qua non, may not be sufficient to cause HAPE, and how defective alveolar fluid clearance may represent a second important pathogenic mechanism. Finally, we outline how this insight gained from studies in HAPE may be translated into the management of hypoxemia related disease states in general.
Resumo:
Antibiotic-induced bacteriolysis exacerbates inflammation and brain damage in bacterial meningitis. Here the quality and temporal kinetics of cerebrospinal fluid (CSF) inflammation were assessed in an infant rat pneumococcal meningitis model for the nonbacteriolytic antibiotic daptomycin versus ceftriaxone. Daptomycin led to lower CSF concentrations of interleukin 1beta (IL-1beta), IL-10, IL-18, monocyte chemoattractant protein 1 (MCP-1), and macrophage inflammatory protein 1 alpha (MIP-1alpha) (P < 0.05). In experimental pneumococcal meningitis, daptomycin treatment resulted in more rapid bacterial killing, lower CSF inflammation, and less brain damage than ceftriaxone treatment.
Resumo:
Cerebrospinal fluid (CSF) shunts carry a high risk of complications. Infections represent a major cause of shunt failure. Diagnosis and therapy of such infections are complicated by the formation of bacterial biofilms attached to shunt surfaces. This study correlated the pathophysiology and clinical course of biofilm infections with microscopical findings on the respective shunts. Surface irregularities, an important risk-factor for shunt colonisation with bacteria, were found to increase over time because of silicone degradation. Scanning electron-microscopy (SEM) documented residual biological material (dead biofilm), which can further promote extant bacterial adhesion, on newly manufactured shunts. Clinical course and SEM both documented bacterial dissemination against CSF flow and the monodirectional valve. In all cases, biofilms grew on both the inner and outer surfaces of the shunts. Microscopy and conventional culture detected all bacterial shunt infections. Analyses of 16S rDNA sequences using conserved primers identified bacteria in only one of three cases, probably because of previous formalin fixation of the samples.
Resumo:
OBJECTIVE: Meticulous sealing of opened air cells in the petrous bone is necessary for the prevention of cerebrospinal fluid (CSF) fistulae after vestibular schwannoma surgery. We performed a retrospective analysis to determine whether muscle or fat tissue is superior for this purpose. METHODS: Between January 2001 and December 2006, 420 patients underwent retrosigmoidal microsurgical removal by a standardized procedure. The opened air cells at the inner auditory canal and the mastoid bone were sealed with muscle in 283 patients and with fat tissue in 137 patients. Analysis was performed regarding the incidence of postoperative CSF fistulae and correlation with the patient's sex and tumor grade. RESULTS: The rate of postoperative CSF leak after application of fat tissue was lower (2.2%) than after use of muscle (5.7%). Women had less postoperative CSF leakage (3.4%) than men (5.6%). There was an inverse correlation with tumor grade. Patients with smaller tumors seemed to have a higher rate of CSF leakage than those with large tumors without hydrocephalus. Only large tumors with severe dislocation of the brainstem causing hydrocephalus showed a higher incidence of CSF leaks. CONCLUSION: Fat implantation is superior to muscle implantation for the prevention of CSF leakage after vestibular schwannoma surgery and should, therefore, be used for the sealing of opened air cells in cranial base surgery.
Resumo:
AIM: Endometriosis is often associated with lower abdominal pain, dysmenorrhea, dyspareunia, and chronic pelvic pain. There is no correlation between the extent of endometriosis and the intensity of pain. The mechanism of pain in endometriosis is unknown. The aim of our study was to investigate the influence of peritoneal fluid (PF) from endometriosis patients on cultured neural cells that are the morphological basis of nociception, and to determine whether there was a relationship between the rAFS staging and an elevation of TGF-beta1 production by these cells. METHODS: Different human neuroblastoma cell lines were grown to 3/4 confluence and then cultured in presence of PF pooled according to the presence of no, mild, or severe endometriosis. After 6 and 24 h of incubation, the morphological changes were assessed and the metabolic activity was determined. RESULTS: The different cell lines showed strongly varying proliferation and aggregation patterns. The metabolic activity was also varying between cell lines, but no consistently increased cell turnover in the PF when compared with the control medium nor associated to a particular, endometriosis-derived PF pool could be shown. In this experimental setting, we have observed that the cell proliferation in the presence of PF was inhibited, and not enhanced as it might have been expected. Measurement of TGF-beta1 showed higher production rates for this cytokine under exposure to PF than in controls for some but not all tested cell lines, but there was no association with the stage (rAFS) of the disease. CONCLUSION: The neuronal cell culture model may become a useful tool to investigate the endometriosis-derived pain, but different endpoints and cell lines may have to be introduced.
Resumo:
Replacement intervals of implantable medical devices are commonly dictated by battery life. Therefore, intracorporeal energy harvesting has the potential to reduce the number of surgical interventions by extending the life cycle of active devices. Given the accumulated experience with intravascular devices such as stents, heart valves, and cardiac assist devices, the idea to harvest a small fraction of the hydraulic energy available in the cardiovascular circulation is revisited. The aim of this article is to explore the technical feasibility of harvesting 1 mW electric power using a miniature hydrodynamic turbine powered by about 1% of the cardiac output flow in a peripheral artery. To this end, numerical modelling of the fluid mechanics and experimental verification of the overall performance of a 1:1 scale friction turbine are performed in vitro. The numerical flow model is validated for a range of turbine configurations and flow conditions (up to 250 mL/min) in terms of hydromechanic efficiency; up to 15% could be achieved with the nonoptimized configurations of the study. Although this article does not entail the clinical feasibility of intravascular turbines in terms of hemocompatibility and impact on the circulatory system, the numerical model does provide first estimates of the mechanical shear forces relevant to blood trauma and platelet activation. It is concluded that the time-integrated shear stress exposure is significantly lower than in cardiac assist devices due to lower flow velocities and predominantly laminar flow.
Resumo:
BACKGROUND In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. METHODS We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. PRINCIPAL FINDINGS All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. CONCLUSION This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body.